Morphogenesis of Rodent Neostriatum Following Early Developmental Dopamine Depletion

  • Pepijn van den Munckhof
  • Vladimir V. Rymar
  • Kelvin C. Luk
  • Lifeng Gu
  • Nienke S. Weiss
  • Pieter Voorn
  • Abbas F. Sadikot
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 58)


Neurons of the neostriatum are organized in anatomically and chemically distinct patch and matrix compartments. Dopaminergic neurons of the substantia nigra and ventral tegmental area provide early input to the embryonic neostriatum and may play an important role in neostriatal morphogenesis. Our group and others have demonstrated early loss of dopaminergic neurons in the Pitx3-deficient aphakia mouse, associated with a >90% reduction in neostriatal dopamine levels and a hypokinetic movement disorder. Here, we show scant or absent dopaminergic fibers in the adult aphakia dorsolateral and medial neostriatum, altering the chemical anatomy of mu-opioid receptor stained patches. Furthermore, neostriatal neuron numbers are comparable in aphakia and wild-type animals, but the volume of the aphakia neostriatum and its neurons is significantly reduced. We propose that early nigrostriatal dopaminergic loss in aphakia mice results in loss of trophic support to the developing neostriatum.


Tyrosine Hydroxylase Ventral Tegmental Area Lateral Ganglionic Eminence Mechanical Lesion Unbiased Stereology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bowen WD, Pert CB and Pert A (1982) Nigral 6-hydroxydopamine lesions equally decrease mu and delta opiate binding to striatal patches: further evidence for a conformationally malleable type 1 opiate receptor. Life Sci 31: 1679–1682.CrossRefPubMedGoogle Scholar
  2. Caboche J, Rogard M and Besson MJ (1991) Comparative development of D1-dopamine and mu opiate receptors in normal and in 6-hydroxydopamine-lesioned neonatal rat striatum: dopaminergic fibers regulate mu but not D1 receptor distribution. Brain Res Dev Brain Res 58: 111–122.CrossRefPubMedGoogle Scholar
  3. Di Porzio U, Zuddas A, Cosenza-Murphy DB and Barker JL (1990) Early appearance of tyrosine hydroxylase immunoreactive cells in the mesencephalon of mouse embryos. Int J Dev Neurosci 8: 523–532.CrossRefPubMedGoogle Scholar
  4. Drago J, Padungchaichot P, Accili D and Fuch S (1998) Dopamine receptors and dopamine transporter in brain function and addictive behaviors: insights from targeted mouse mutants. Dev Neurosci 20: 188–203.CrossRefPubMedGoogle Scholar
  5. Fentress JC, Stanfield BB and Cowan WM (1981) Observations on the development of the striatum in mice and rats. Anat Embryol 163: 275–298.CrossRefPubMedGoogle Scholar
  6. Fernández V, Bravo H, Kuljis R and Fuentes I (1979) Autoradiographic study of the development of the neostriatum in the rabbit. Brain Behav Evol 16: 113–128.CrossRefPubMedGoogle Scholar
  7. Fishell G and Van der Kooy D (1991) Pattern formation in the striatum: neurons with early projections to the substantia nigra survive the cell death period. J Comp Neurol 312: 33–42.CrossRefPubMedGoogle Scholar
  8. Gardner EL, Zukin RS and Makman MH (1980) Modulation of opiate receptor binding in striatum and amygdala by selective mesencephalic lesions. Brain Res 194: 232–239.CrossRefPubMedGoogle Scholar
  9. Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236: 454–476.CrossRefPubMedGoogle Scholar
  10. Gerfen CR, Herkenham M and Thibault J (1987a) The neostriatal mosaic. II. Patch and matrix-directed mesiostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7: 3915–3934.PubMedGoogle Scholar
  11. Gerfen CR, Baimbridge KG and Thibault J (1987b) The neostriatal mosaic. III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci 7: 3935–3944.PubMedGoogle Scholar
  12. Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Möller A, Nielsen K, Nyengard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96: 857–881.CrossRefPubMedGoogle Scholar
  13. Herkenham M and Pert CB (1981) Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature 291: 415–418.CrossRefPubMedGoogle Scholar
  14. Hwang DY, Ardayfio P, Kang UJ, Semina EV and Kim KS (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 114: 123–131.CrossRefPubMedGoogle Scholar
  15. Hwang DY, Fleming SM, Ardayfio P, Moran-Gates T, Kim H, Tarazi FI, Chesselet MF and Kim KS (2005) 3,4-Dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci 25: 2132–2137.CrossRefPubMedGoogle Scholar
  16. Kawano H, Ohyama K, kawamura K and Nagatsu I (1995) Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res Dev Brain Res 86: 101–113.CrossRefPubMedGoogle Scholar
  17. Lança AJ, Boyd S, Kolb BE and Van der Kooy D (1986) The development of a patchy organization of the rat striatum. Brain Res Dev Brain Res 27: 1–10.Google Scholar
  18. Lauder JM (1988) Neurotransmitters as morphogens. Prog Brain Res 73: 365–387.CrossRefPubMedGoogle Scholar
  19. Luk KC and Sadikot AF (2001) GABA promotes survival but not proliferation of parvalbumin-immunoreactive interneurons in rodent neostriatum: an in vivo study with stereology. Neuroscience 104: 93–103.CrossRefPubMedGoogle Scholar
  20. Nagatsu T, Levitt M and Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239: 2910–2917.PubMedGoogle Scholar
  21. Nunes I, Tovmasian LT, Silva RM, Burke RE and Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100: 4245–4250.CrossRefPubMedGoogle Scholar
  22. Ohtani N, Goto T, Waeber C and Bhide PG (2003) Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci 23: 2840–2850.PubMedGoogle Scholar
  23. Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigra nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical dissector methods. J Comp Neurol 366: 580–599.CrossRefPubMedGoogle Scholar
  24. Pollard H, Llorens C, Schwartz JC, Gros C and Dray F (1978) Localization of opiate receptors and enkephalins in the rat striatum in relationship with the nigrostriatal dopaminergic system: lesion studies. Brain Res 151: 392–398.CrossRefPubMedGoogle Scholar
  25. Rieger DK, Reichenberger E, McLean W, Sidow A and Olsen BR (2001) A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72: 61–72.CrossRefPubMedGoogle Scholar
  26. Sadikot AF and Sasseville R (1997) Neurogenesis in the mammalian neostriatum and nucleus accumbens: parvalbumin-immunoreactive GABAergic interneurons. J Comp Neurol 389: 193–211.CrossRefPubMedGoogle Scholar
  27. Sadikot AF, Luk KC, Van den Munckhof P, Rymar VV, Leung K, Gandhi R and Drouin J (2005) Pitx3 is necessary for survival of midbrain dopaminergic neuron subsets relevant to Parkinson’s disease. In: Bolam JP, Ingham CA and Magill PJ (eds) The Basal Ganglia. VIII. Advances in Behavioral Biology, Springer, New York, pp 265–274.CrossRefGoogle Scholar
  28. Semina EV, Murray JC, Reiter R, Hrstka RF and Graw J (2000) Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet 9: 1575–1585.CrossRefPubMedGoogle Scholar
  29. Sirinathsinghji DJS and Dunnett SB (1989) Disappearance of the mu-opiate receptor patches in the rat neostriatum following lesioning of the ipsilateral nigrostriatal dopamine pathway with 1-methyl-4-phenylpyridinium ion (MPP+): restoration by embryonic nigral dopamine grafts. Brain Res 504: 115–120.CrossRefPubMedGoogle Scholar
  30. Smidt MP, Smits SM, Bouwmeester H, Hamers FP, Van der Linden AJ, Hellemons AJ, Graw J and Burbach JP (2004) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131: 1145–1155.CrossRefPubMedGoogle Scholar
  31. Snyder-Keller AM (1991) Development of striatal compartmentalization following pre- or postnatal dopamine depletion. J Neurosci 11: 810–821.PubMedGoogle Scholar
  32. Van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF and Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130: 2535–2542.CrossRefPubMedGoogle Scholar
  33. Van den Munckhof P, Gilbert F, Chamberland M, Lévesque D and Drouin J (2006) Striatal neuroadaption and rescue of locomotor deficit by L-dopa in aphakia mice, a model of Parkinson’s disease. J Neurochem 96: 160–170.CrossRefPubMedGoogle Scholar
  34. Van der Kooy D (1984) Developmental relationships between opiate receptors and dopamine in the formation of caudate-putamen patches. Brain Res Dev Brain Res 14: 300–303.Google Scholar
  35. Van der Kooy D (1996) Early postnatal lesions of the substantia nigra produce massive shrinkage of the rat striatum, disruption of patch neuron distribution, but no loss of patch neurons. Brain Res Dev Brain Res 94: 242–245.CrossRefPubMedGoogle Scholar
  36. Van der Kooy D and Fishell G (1987) Neuronal birthdate underlies the development of striatal compartments. Brain Res 401: 155–161.CrossRefPubMedGoogle Scholar
  37. Van der Kooy D and Fishell G (1992) Embryonic lesions of the substantia nigra prevent the patchy expression of opiate receptors, but not the segregation of patch and matrix compartment neurons, in the developing striatum. Brain Res Dev Brain Res 66: 141–145.PubMedGoogle Scholar
  38. Wang H, Moriwaki A, Wang JB, Uhl GR and Pickel VM (1996) Ultrastructural immunocytochemical localization of mu opioid receptors and Leu5-enkephalin in the patch compartment of the rat caudate-putamen nucleus. J Comp Neurol 375: 659–674.CrossRefPubMedGoogle Scholar
  39. Zhou QY and Palmiter RD (1995) Dopamine-deficient mice are hypoactive, adipsic, and aphagic. Cell 83: 1197–1209.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pepijn van den Munckhof
    • 1
  • Vladimir V. Rymar
    • 2
  • Kelvin C. Luk
    • 2
  • Lifeng Gu
    • 2
  • Nienke S. Weiss
    • 1
  • Pieter Voorn
    • 1
  • Abbas F. Sadikot
    • 2
  1. 1.Department of Anatomy and Neurosciences, Neuroscience Campus AmsterdamVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealCanada

Personalised recommendations