Skip to main content

Nitrergic Tone Influences Activity of Both Ventral Striatum Projection Neurons and Interneurons

  • Conference paper
  • First Online:
The Basal Ganglia IX

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 58))

Abstract

Nitric oxide (NO) is a well-established striatal neuromodulator, effecting both the activity and electrical coupling of striatal projection neurons. The NO-producing interneurons within the striatum are altered in schizophrenia brain tissue, and they may be key to the pathophysiology and future treatment of schizophrenia. We investigated in vivo the effect of locally applied NO-active drugs on the firing rate of electrophysiologically and anatomically identified, medium-sized densely spiny neurons and interneurons in the ventral striatum.

Juxtacellular recording and labelling experiments were performed on ventral striatal neurons during prefrontal cortex electrical stimulation. A NO donor, precursor or scavenger were applied microiontophoretically and single unit responses were recorded; after labelling, neurons were examined morphologically to determine neuronal type.

Correlation of electrophysiological and anatomical findings revealed four drug response profiles and four types of neurons. The nitrergic modulation of ventral striatal neurons is neuronal-type specific and may be effector-mechanism dependent, and it is involved in the gating of cortically driven ventral striatal output and the temporal and spatial synchrony of the striatal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett BD and Bolam JP (1993) Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 609: 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Bolam JP, Wainer BH and Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12: 711–718.

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Pisani A, Bonsi P, Giacomini P, Bernardi G and Calabresi P (2001) Stimulation of nitric oxide-cGMP pathway excites striatal cholinergic interneurons via protein kinase G activation. J Neurosci 21: 1393–1400.

    CAS  PubMed  Google Scholar 

  • Di Giovanni G, Ferraro G, Sardo P, Galati S, Esposito E and La Grutta V (2003) Nitric oxide modulates striatal neuronal activity via soluble guanylyl cyclase: an in vivo microiontophoretic study in rats. Synapse 48: 100–107.

    Article  PubMed  Google Scholar 

  • Fagni L and Bockaert J (1996) Effects of nitric oxide on glutamate-gated channels and other ionic channels. J Chem Neuroanat 10: 231–240.

    Article  CAS  PubMed  Google Scholar 

  • French SJ and Totterdell S (2002) Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol 446: 151–165.

    Article  PubMed  Google Scholar 

  • French SJ, van Dongen YC, Groenewegen HJ and Totterdell S (2002) Synaptic convergence of hippocampal and prefrontal cortical afferents to the ventral striatum in rat. In: Nicholson LFB and Faull RL (eds) The Basal Ganglia VII. Kluwer Academic/Plenum, New York, pp 399–408.

    Google Scholar 

  • French SJ, Ritson GP, Hidaka S and Totterdell S (2005) Nucleus accumbens nitric oxide immunoreactive interneurons receive nitric oxide and ventral subicular afferents in rats. Neuroscience 135: 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J and Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57: 683–706.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13: 4908–4923.

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y and Kubota Y (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci 16: 2701–2715.

    CAS  PubMed  Google Scholar 

  • Kita H, Kosaka T and Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Lauer M, Johannes S, Fritzen S, Senitz D, Riederer P and Reif A (2005) Morphological abnormalities in nitric-oxide-synthase-positive striatal interneurons of schizophrenic patients. Neuropsychobiology 52: 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Mallet N, Le Moine C, Charpier S and Gonon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25: 3857–3869.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell P and Grace AA (1997) Cortical afferents modulate striatal gap junction permeability via nitric oxide. Neuroscience 76: 1–5.

    Article  PubMed  Google Scholar 

  • Pennartz CM, Ameerun RF, Groenewegen HJ and Lopes da Silva FH (1993) Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur J Neurosci 5: 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Pennartz CM, Groenewegen HJ and Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42: 719–761.

    Article  CAS  PubMed  Google Scholar 

  • Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J Neurosci Methods 65: 113–136.

    Article  CAS  PubMed  Google Scholar 

  • Reif A, Herterich S, Strobel A, Ehlis AC, Saur D, Jacob CP, Wienker T, Topner T, Fritzen S, Walter U, Schmitt A, Fallgatter AJ and Lesch KP (2006) A neuronal nitric oxide synthase (NOS-I) haplotype associated with schizophrenia modifies prefrontal cortex function. Mol Psychiatry 11: 286–300.

    Article  CAS  PubMed  Google Scholar 

  • Robello M, Amico C, Bucossi G, Cupello A, Rapallino MV and Thellung S (1996) Nitric oxide and GABAA receptor function in the rat cerebral cortex and cerebellar granule cells. Neuro-science 74: 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Sardo P, Ferraro G, Di Giovanni G and La Grutta V (2003) Nitric oxide-induced inhibition on striatal cells and excitation on globus pallidus neurons: a microiontophoretic study in the rat. Neurosci Lett 343: 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Vincent SR, Johansson O, Hokfelt T, Skirboll L, Elde RP, Terenius L, Kimmel J and Goldstein M (1983) NADPH-diaphorase: a selective histochemical marker for striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities. J Comp Neurol 217: 252–263.

    Article  CAS  PubMed  Google Scholar 

  • West AR and Galloway MP (1997) Endogenous nitric oxide facilitates striatal dopamine and glutamate efflux in vivo: role of ionotropic glutamate receptor-dependent mechanisms. Neuropharmacology 36: 1571–1581.

    Article  CAS  PubMed  Google Scholar 

  • West AR and Grace AA (2004) The nitric oxide-guanylyl cyclase signaling pathway modulates membrane activity states and electrophysiological properties of striatal medium spiny neurons recorded in vivo. J Neurosci 24: 1924–1935.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Jane French .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

French, S.J., Hartung, H. (2009). Nitrergic Tone Influences Activity of Both Ventral Striatum Projection Neurons and Interneurons. In: Groenewegen, H., Voorn, P., Berendse, H., Mulder, A., Cools, A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0340-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0340-2_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0339-6

  • Online ISBN: 978-1-4419-0340-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics