Axon Guidance in the Dopamine System

Part of the Advances in Experimental Medicine and Biology book series (volume 651)


Meso-diencephalic dopamine neurons (mdDA) neurons are located in the retrorubral field (RRF), substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) and give rise to prominent ascending axon projections. These so-called mesotelencephalic projections are organized into three main pathways: the mesostriatal, mesocortical and mesolimbic pathways. Mesotelencephalic pathways in the adult nervous system have been studied in much detail as a result of their important physiological functions and their implication in psychiatric, neurological and neurodegenerative disease. In comparison, relatively little is known about the formation of these projection systems during embryonic and postnatal development. However, understanding the formation of mdDA neurons and their projections is essential for the design of effective therapies for mdDA neuron-associated neurological and neurodegenerative disorders. Here we summarize our current knowledge of the ontogeny of mdDA axon projections in subsystems of the developing rodent central nervous system (CNS) and discuss the cellular and molecular mechanisms that mediate mdDA axon guidance in these CNS regions.


Ventral Tegmental Area Axon Guidance Floor Plate Ventral Mesencephalon Central Nervous System Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci 2007; 30:194–202.CrossRefPubMedGoogle Scholar
  2. 2.
    Smidt MP, Burbach JP. How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 2007; 8:21–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Carlsson A, Falck B, Hillarp NA. Cellular localization of brain monoamines. Acta Physiol Scand Suppl 1962; 56:1–28.PubMedGoogle Scholar
  4. 4.
    Dahlström A, Fuxe K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand Suppl 1994; 232:1–55.Google Scholar
  5. 5.
    Hökfelt T, Martensson R, Björklund A et al. Distribution of tyrosine hydroxylase-immunoreactive neurons in the rat brain. Bjorklund A, Hokflet T, eds. In: Handbook Chemical Neuroanatomy (Classical Transmitters in the CNS, Part I). Amsterdam: Elsevier 1984; (2):409–440.Google Scholar
  6. 6.
    Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of parkinson disease: molecules to medicine. J Clin Invest 2006; 116:1744–1754.CrossRefPubMedGoogle Scholar
  7. 7.
    Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 2007; 64:327–337.CrossRefPubMedGoogle Scholar
  8. 8.
    Guillin O, Abi-Dargham A, Laruelle M. Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 2007; 78:1–39.CrossRefPubMedGoogle Scholar
  9. 9.
    Nestler EJ. Genes and addiction. Nat Genet 2000; 26:277–281.CrossRefPubMedGoogle Scholar
  10. 10.
    Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 1993; 18:247–291.CrossRefPubMedGoogle Scholar
  11. 11.
    Van den Heuvel DMA, Pasterkamp RJ. Getting connected in the dopamine system. Progress Neurobiol 2008; in press.Google Scholar
  12. 12.
    Gates MA, Coupe VM, Torres EM et al. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur J Neurosci 2004; 19:831–844.CrossRefPubMedGoogle Scholar
  13. 13.
    Hernandez-Montiel HL, Tamariz E, Sandoval-Minero MT et al. Semaphorins 3A, 3C and 3F in mesencephalic dopaminergic axon pathfinding. J Comp Neurol 2008; 506:387–397.CrossRefPubMedGoogle Scholar
  14. 14.
    Nakamura S, Ito Y, Shirasaki R et al. Local directional cues control growth polarity of dopaminergic axons along the rostrocaudal axis. J Neurosci 2000; 20:4112–4119.PubMedGoogle Scholar
  15. 15.
    Holmes C, Jones SA, Greenfield SA. The influence of target and nontarget brain regions on the development of mid-brain dopaminergic neurons in organotypic slice culture. Brain Res Dev Brain Res 1995; 88:212–219.CrossRefPubMedGoogle Scholar
  16. 16.
    Tamada A, Shirasaki R, Murakami F. Floor plate chemoattracts crossed axons and chemorepels uncrossed axons in the vertebrate brain. Neuron 1995; 14:1083–1093.CrossRefPubMedGoogle Scholar
  17. 17.
    Marillat V, Cases O, Nguyen-Ba-Charvet KA et al. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol 2002; 442:130–155.CrossRefPubMedGoogle Scholar
  18. 18.
    Lin L, Rao Y, Isacson O. Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. Mol Cell Neurosci. 2005; 28:547–555.CrossRefPubMedGoogle Scholar
  19. 19.
    Lin L, Isacson O. Axonal growth regulation of fetal and embryonic stem cell-derived dopaminergic neurons by Netrin-1 and Slits. Stem Cells 2006; 24:2504–2513.CrossRefPubMedGoogle Scholar
  20. 20.
    de Wit J, Verhaagen J. Proteoglycans as modulators of axon guidance cue function. Adv Exp Med Biol. 2007; 600:73–89.CrossRefPubMedGoogle Scholar
  21. 21.
    Funato H, Saito-Nakazato Y, Takahashi H. Axonal growth from the habenular nucleus along the neuromere boundary region of the diencephalon is regulated by semaphorin 3F and netrin-1. Mol Cell Neurosci. 2000; 16:206–220.CrossRefPubMedGoogle Scholar
  22. 22.
    Voorn P, Kalsbeek A, Jorritsma-Byham B et al. The pre and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 1988; 25:857–887.CrossRefPubMedGoogle Scholar
  23. 23.
    Takahashi T, Nakamura F, Jin Z et al. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nat Neurosci. 1998; 1:487–493.CrossRefPubMedGoogle Scholar
  24. 24.
    Dickson BJ. Molecular Mechanisms of Axon Guidance. New York, NY. Science 2002; 298:1959–1964.CrossRefPubMedGoogle Scholar
  25. 25.
    Kawano H, Horie M, Honma S et al. Aberrant trajectory of ascending dopaminergic pathway in mice lacking Nkx2.1. Exp Neurol. 2003; 182:103–112.CrossRefPubMedGoogle Scholar
  26. 26.
    Marin O, Baker J, Puelles L et al. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 2002; 129:761–773.PubMedGoogle Scholar
  27. 27.
    Zhou Y, Gunput RF, Pasterkamp RJ. Semaphorin signaling: progress made and promises ahead. Trends Biol Sci. 2008 Apr; 33(4):161–70.CrossRefGoogle Scholar
  28. 28.
    Bagri A, Marin O, Plump AS et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 2002; 33:233–248.CrossRefPubMedGoogle Scholar
  29. 29.
    Johansson S, Stromberg I. Fetal lateral ganglionic eminence attracts one of two morphologically different types of tyrosine hydroxylase-positive nerve fibers formed by cultured ventral mesencephalon. Cell Transplant 2003; 12:243–255.PubMedGoogle Scholar
  30. 30.
    Ostergaard K, Schou JP, Zimmer J. Rat ventral mesencephalon grown as organotypic slice cultures and cocultured with striatum, hippocampus and cerebellum. Exp Brain Res 1990; 82:547–565.CrossRefPubMedGoogle Scholar
  31. 31.
    Plenz D, Kitai ST. Organotypic cortex-striatum-mesencephalon cultures: the nigrostriatal pathway. Neurosci Lett 1996; 209:177–180.CrossRefPubMedGoogle Scholar
  32. 32.
    Marin O, Yaron A, Bagri A et al. Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. New York. Science 2001; 293:872–875.CrossRefPubMedGoogle Scholar
  33. 33.
    Pascual M, Pozas E, Soriano E. Role of class 3 semaphorins in the development and maturation of the septohippocampal pathway. Hippocampus 2005; 15:184–202.CrossRefPubMedGoogle Scholar
  34. 34.
    Hu Z, Cooper M, Crockett DP et al. Differentiation of the midbrain dopaminergic pathways during mouse development. J Comp Neurol 2004; 476:301–311.CrossRefPubMedGoogle Scholar
  35. 35.
    Yue Y, Widmer DA, Halladay AK et al. Specification of distinct dopaminergic neural pathways: roles of the Eph family receptor EphB1 and ligand ephrin-B2. J Neurosci 1999; 19:2090–2101.PubMedGoogle Scholar
  36. 36.
    Gao PP, Yue Y, Cerretti DP et al. Ephrin-dependent growth and pruning of hippocampal axons. Proc Natl Acad Sci U S A. 1999; 96:4073–4077.CrossRefPubMedGoogle Scholar
  37. 37.
    Richards AB, Scheel TA, Wang K et al. EphB1 null mice exhibit neuronal loss in substantia nigra pars reticulata and spontaneous locomotor hyperactivity. Eur J Neurosci 2007; 25:2619–2628.CrossRefPubMedGoogle Scholar
  38. 38.
    Gale NW, Holland SJ, Valenzuela DM et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 1996; 17:9–19.CrossRefPubMedGoogle Scholar
  39. 39.
    Halladay AK, Tessarollo L, Zhou R et al. Neurochemical and behavioral deficits consequent to expression of a dominant negative EphA5 receptor. Brain Res Mol Brain Res 2004; 123:104–111.CrossRefPubMedGoogle Scholar
  40. 40.
    Sieber BA, Kuzmin A, Canals JM et al. Disruption of EphA/ephrin-a signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine. Mol Cell Neurosci 2004; 26:418–428.CrossRefPubMedGoogle Scholar
  41. 41.
    Kalsbeek A, Voorn P, Buijs RM et al. Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 1988; 269:58–72.CrossRefPubMedGoogle Scholar
  42. 42.
    Van Eden CG, Hoorneman EM, Buijs RM et al. Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 1987; 22:849–862.CrossRefPubMedGoogle Scholar
  43. 43.
    Hemmendinger LM, Garber BB, Hoffmann PC et al. Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc Natl Acad Sci U S A. 1981; 78:1264–1268.CrossRefPubMedGoogle Scholar
  44. 44.
    Winkler C, Kirik D, Bjorklund A. Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 2005; 28:86–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Jin Y, Ziemba KS, Smith GM. Axon growth across a lesion site along a preformed guidance pathway in the brain. Exp Neurol; 2008 Apr; 210(2):521–30CrossRefPubMedGoogle Scholar
  46. 46.
    Ziemba KS, Chaudhry N, Rabchevsky AG et al. Targeting axon growth from neuronal transplants along preformed guidance pathways in the adult CNS. J Neurosci 2008; 28:340–348.CrossRefPubMedGoogle Scholar
  47. 47.
    Grünblatt E, Mandel S, Jacob-Hirsch J et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alteractions in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 2004; 111:1543–1573.CrossRefPubMedGoogle Scholar
  48. 48.
    Grunblatt E, Mandel S, Maor G et al. Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson’s disease using cDNA microarray: effect of R-apomorphine. J Neurochem 2001; 78:1–12.CrossRefPubMedGoogle Scholar
  49. 49.
    Hauser MA, Li YJ, Xu H et al. Expression profiling of substantia nigra in parkinson disease, progressive supranuclear palsy and frontotemporal dementia with parkinsonism. Arch Neurol 2005; 62:917–921.CrossRefPubMedGoogle Scholar
  50. 50.
    Miller RM, Callahan LM, Casaceli C et al. Dysregulation of gene expression in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-lesioned mouse substantia nigra. J Neurosci 2004; 24:7445–7454.CrossRefPubMedGoogle Scholar
  51. 51.
    Lesnick TG, Papapetropoulos S, Mash DC et al. A genomic pathway approach to a complex disease: axon guidance and Parkinsons disease. PLoS Genet 2007; 3:e98.CrossRefPubMedGoogle Scholar
  52. 52.
    Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 2004; 47 (Suppl 1):33–46.CrossRefPubMedGoogle Scholar
  53. 53.
    Bahi A, Dreyer JL. Cocaine-induced expression changes of axon guidance molecules in the adult rat brain. Mol Cell Neurosci. 2005; 28:275–291.CrossRefPubMedGoogle Scholar
  54. 54.
    Jassen AK, Yang H, Miller GM et al. Receptor regulation of gene expression of axon guidance molecules: implications for adaptation. Mol Pharmacol 2006; 70:71–77.PubMedGoogle Scholar
  55. 55.
    Dailly E, Chenu F, Renard CE et al. Dopamine, depression and antidepressants. Fundam Clin Pharmacol 2004; 18:601–607.CrossRefPubMedGoogle Scholar
  56. 56.
    Sesack SR, Carr DB. Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 2002; 77:513–517.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of NeuroscienceUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations