Skip to main content

Terminal Differentiation of Mesodiencephalic Dopaminergic Neurons:

The Role of Nurr1 and Pitx3

  • Chapter
Development and Engineering of Dopamine Neurons

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 651))

Abstract

The orphan nuclear hormone receptor Nurr1 and the homeobox Pitx3 were the first two transcription factors that were implicated in the development of mesodiencephalic dopaminergic (mdDA) neurons.1,2 These factors have their own expression profile in the brain: Nurr1 is expressed in many forebrain regions, whereas Pitx3 is exclusively expressed in mdDA neurons. Functional analysis of the respective mouse mutants have emphasized the importance of both factors for mdDA development and their difference in mode of action: Nurr1 has been implicated particularly in specifying the dopaminergic neurotransmitter phenotype and in neuronal maintenance, while Pitx3 is essential for the development of a subset of mdDA neurons encompassing the SNc. Recent data on molecular mechanisms of action and regulation of target genes reveal a large complexity and suggest that Nurr1 and Pitx3 are part of extended regulatory networks. In this chapter we highlight the molecular programming of mdDA neurons3 4 from the viewpoint of Pitx3 and Nurr1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zetterström R, Solomin L, Jansson L et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997; 276(5310):248–250.

    Article  PubMed  Google Scholar 

  2. Smidt M, vanSchaick H, Lanctôt C et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 1997; 94(24):13305–10.

    Article  PubMed  CAS  Google Scholar 

  3. Smits SM, Smidt MP. The role of Pitx3 in survival of midbrain dopaminergic neurons. J Neural Transm Suppl 2006; 70:57–60.

    Article  PubMed  CAS  Google Scholar 

  4. Smidt MP, Burbach JPH. How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 2007; 8(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  5. Lamonerie T, Tremblay JJ, Lanctot C et al. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 1996; 10(10):1284–95.

    Article  PubMed  CAS  Google Scholar 

  6. Semina E, Reiter R, Leysens N et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in rieger syndrome. Nat Genet 1996; 14(4):392–9.

    Article  PubMed  CAS  Google Scholar 

  7. Gage PJ, Camper SA. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet 1997; 6(3):457–64.

    Article  PubMed  CAS  Google Scholar 

  8. Smidt M, Cox J, vanSchaick H et al. Analysis of three Ptx2 splice variants on transcriptional activity and differential expression pattern in the brain. J Neurochem 2000; 75(5):1818–25.

    Article  PubMed  CAS  Google Scholar 

  9. Semina EV, Reiter RS, Murray JC. Isolation of a new homeobox gene belonging to the pitx/rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet 1997; 6(12):2109–2116.

    Article  PubMed  CAS  Google Scholar 

  10. Varnum DS, Stevens LC. Aphakia, a new mutation in the mouse. J Hered 1968; 59(2):147–50.

    PubMed  CAS  Google Scholar 

  11. Grimm C, Chatterjee B, Favor et al. Aphakia (ak), a mouse mutation affecting early eye development: fine mapping, consideration of candidate genes and altered pax6 and six3 gene expression pattern. Dev Genet 1998; 23(4):299–316.

    Article  PubMed  CAS  Google Scholar 

  12. Graw J. Mouse models of congenital cataract. Eye 1998; 13(Pt 3b):438–44.

    Google Scholar 

  13. Graw J. Cataract mutations and lens development. Prog Retin Eye Res 1999; 18(2):235–67.

    Article  PubMed  CAS  Google Scholar 

  14. Graw J, Loster J. Developmental genetics in ophthalmology. Ophthalmic Genet 2003; 24(1):1–33.

    Article  PubMed  Google Scholar 

  15. Rieger DK, Reichenberger E, McLean W et al. A double-deletion mutation in the pitx3 gene causes arrested lens development in aphakia mice. Genomics 2001; 72(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  16. Smidt MP, Smits SM, Burbach JP. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur J Pharmacol 2003; 480(1–3):75–88.

    Article  PubMed  CAS  Google Scholar 

  17. Smidt MP, Smits SM, Bouwmeester H et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene pitx3. Development 2004; 131(5):1145–55.

    Article  PubMed  CAS  Google Scholar 

  18. Semina EV, Ferrell RE, Mintz-Hittner HA et al. A novel homeobox gene pitx3 is mutated in families with autosomal-dominant cataracts and asmd. Nat Genet 1998; 19(2):167–170.

    Article  PubMed  CAS  Google Scholar 

  19. Bidinost C, Matsumoto M, Chung D et al. Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Invest Ophthalmol Vis Sci 2006; 47(4):1274–1280.

    Article  PubMed  Google Scholar 

  20. Smidt MP, Smits SM, Burbach JPH. Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 2004; 318(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  21. L’Honoré A, Coulon V, Marcil A et al. Sequential expression and redundancy of pitx2 and pitx3 genes duringmuscle development. Dev Biol 2007; 307(2):421–433.

    Article  PubMed  CAS  Google Scholar 

  22. Coulon V, L’Honoré A, Ouimette JF et al. A muscle-specific promoter directs pitx3 gene expression in skeletal muscle cells. J Biol Chem 2007; 282(45):33192–33200.

    Article  PubMed  CAS  Google Scholar 

  23. Smidt MP, Asbreuk CH, Cox JJ et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires lmx1b. Nat. Neurosci 2000; 3(4):337–41.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao S, Maxwell S, Jimenez-Beristain A et al. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur J Neurosci 2004; 19(5):1133–40.

    Article  PubMed  Google Scholar 

  25. Smidt M, Asbreuk C, Cox J et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 2000; 3(4):337–41.

    Article  PubMed  CAS  Google Scholar 

  26. Smidt MP, Smits SM, Bouwmeester H et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 2004; 131(5):1145–55.

    Article  PubMed  CAS  Google Scholar 

  27. Cazorla P, Smidt M, O’Malley K et al. A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J Neurochem 2000; 74(5):1829–37.

    Article  PubMed  CAS  Google Scholar 

  28. Lebel M, Gauthier Y, Moreau A et al. Pitx3 activates mouse tyrosine hydroxylase promoter via a high-affinity binding site. J Neurochem 2001; 77(2):558–67.

    Article  PubMed  CAS  Google Scholar 

  29. Messmer K, Remington MP, Skidmore F et al. Induction of tyrosine hydroxylase expression by the transcription factor pitx3. Int J Dev Neurosci 2007; 25(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  30. Smits SM, Burbach JPH, Smidt MP. Developmental origin and fate of mesodiencephalic dopamine neurons. Prog Neurobiol 2006; 78(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  31. Jacobs FMJ, Smits SM, Noorlander CW et al. Retinoic acid counteracts developmental defects in the substantia nigra caused by pitx3 deficiency. Development 2007; 134(14):2673–2684.

    Article  PubMed  CAS  Google Scholar 

  32. Burbach JPH, Smits S, Smidt MP. Transcription factors in the development of midbrain dopamine neurons. Ann N Y Acad Sci 2003; 991:61–8.

    PubMed  CAS  Google Scholar 

  33. Smidt MP, Smits SM, Burbach JPH. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur J Pharmacol 2003; 480(1–3):75–88.

    Article  PubMed  CAS  Google Scholar 

  34. Hwang DY, Ardayfio P, Kang UJ et al. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 2003; 114(2):123–31.

    Article  PubMed  CAS  Google Scholar 

  35. van den Munckhof P, Luk KC, Ste-Marie L et al. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 2003; 130(11):2535–42.

    Article  PubMed  CAS  Google Scholar 

  36. Zhao S, Maxwell S, Jimenez-Beristain A et al. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur J Neurosci 2004; 19(5):1133–40.

    Article  PubMed  Google Scholar 

  37. Maxwell SL, Ho HY, Kuehner E et al. Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 2005; 282(2):467–79.

    Article  PubMed  CAS  Google Scholar 

  38. Semina EV, Murray JC, Reiter R et al. Deletion in the promoter region and altered expression of pitx3 homeobox gene in aphakia mice. Hum Mol Genet 2000; 9(11):1575–1585.

    Article  PubMed  CAS  Google Scholar 

  39. Rieger D, Reichenberger E, McLean W et al. A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 2001; 72(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  40. Nunes I, Tovmasian LT, Silva RM et al. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 2003; 100(7):4245–50.

    Article  PubMed  CAS  Google Scholar 

  41. Smits SM, Mathon DS, Burbach JPH et al. Molecular and cellular alterations in the Pitx3-deficient midbrain dopaminergic system. Mol Cell Neurosci 2005; 30(3):352–63.

    Article  PubMed  CAS  Google Scholar 

  42. Teitelman G, Jaeger CB, Albert V et al. Expression of amino acid decarboxylase in proliferating cells of the neural tube and notochord of developing rat embryo. J Neurosci 1983; 3(7):1379–88.

    PubMed  CAS  Google Scholar 

  43. Hynes M, Poulsen K, Tessier-Lavigne M et al. Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 1995; 80(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  44. Davidson C, Ellinwood EH, Douglas SB et al. Effect of cocaine, nomifensine, gbr 12909 and win 35428 on carbon fiber microelectrode sensitivity for voltammetric recording of dopamine. J Neurosci Methods 2000; 101(1):75–83.

    Article  PubMed  CAS  Google Scholar 

  45. Zhuang X, Oosting RS, Jones SR et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci USA 2001; 98(4):1982–7.

    Article  PubMed  CAS  Google Scholar 

  46. Kas MJH, van der Linden AJA, Oppelaar H et al. Phenotypic segregation of aphakia and pitx3-null mutants reveals that pitx3 deficiency increases consolidation of specific movement components. Behav Brain Res 2008; 186(2):208–214.

    Article  PubMed  CAS  Google Scholar 

  47. van den Munckhof P, Gilbert F, Chamberland M et al. Striatal neuroadaptation and rescue of locomotor deficit by l-dopa in aphakia mice, a model of parkinson’s disease. J Neurochem 2006; 96(1):160–170.

    Article  PubMed  CAS  Google Scholar 

  48. Costall B, Naylor RJ, Nohria V. Climbing behaviour induced by apomorphine in mice: a potential model for the detection of neuroleptic activity. Eur J Pharmacol 1978; 50(1):39–50.

    Article  PubMed  CAS  Google Scholar 

  49. Hwang DY, Fleming SM, Ardayfio P et al. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci 2005; 25(8):2132–7.

    Article  PubMed  CAS  Google Scholar 

  50. Smits SM, Noorlander CW, Kas MJH et al. Alterations in serotonin signalling are involved in the hyperactivity of pitx3-deficient mice. Eur J Neurosci 2008; 27(2):388–395.

    Article  PubMed  Google Scholar 

  51. Chung S, Hedlund E, Hwang M et al. The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci 2005; 28(2):241–52.

    Article  PubMed  CAS  Google Scholar 

  52. Wallén A, Zetterström R, Solomin L et al. Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res 1999; 253(2):737–46.

    Article  PubMed  CAS  Google Scholar 

  53. Blentic A, Gale E, Maden M. Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Dev Dyn 2003; 227(1):114–127.

    Article  PubMed  CAS  Google Scholar 

  54. Fan X, Molotkov A, Manabe SI et al. Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Mol Cell Biol 2003; 23(13):4637–4648.

    Article  PubMed  CAS  Google Scholar 

  55. Molotkov A, Duester G. Genetic evidence that retinaldehyde dehydrogenase raldh1 (aldh1a1) functions downstream of alcohol dehydrogenase adh1 in metabolism of retinol to retinoic acid. J Biol Chem 2003; 278(38):36085–36090.

    Article  PubMed  CAS  Google Scholar 

  56. Tasheva ES, Klocke B, Conrad GW. Analysis of transcriptional regulation of the small leucine rich proteoglycans. Mol Vis 2004; 10:758–72.

    PubMed  CAS  Google Scholar 

  57. Peng C, Fan S, Li X et al. Overexpression of pitx3 upregulates expression of bdnf and gdnf in sh-sy5y cells and primary ventral mesencephalic cultures. FEBS Lett 2007; 581(7):1357–1361.

    Article  PubMed  CAS  Google Scholar 

  58. Law S, Conneely O, DeMayo F et al. Identification of a new brain-specific transcription factor, NURR1. Mol Endocrinol 1992; 6(12):2129–35.

    Article  PubMed  CAS  Google Scholar 

  59. Shiau AK, Coward P, Schwarz M et al. Orphan nuclear receptors: from new ligand discovery technologies to novel signaling pathways. Curr Opin Drug Discov Devel 2001; 4(5):575–590.

    PubMed  CAS  Google Scholar 

  60. Michelhaugh SK, Vaitkevicius H, Wang J et al. Dopamine neurons express multiple isoforms of the nuclear receptor nurr1 with diminished transcriptional activity. J Neurochem 2005; 95(5):1342–1350.

    Article  PubMed  CAS  Google Scholar 

  61. Ohkura N, Hosono T, Maruyama K et al. An isoform of nurr1 functions as a negative inhibitor of the ngfi-b family signaling. Biochim Biophys Acta 1999; 1444(1):69–79.

    PubMed  CAS  Google Scholar 

  62. Saucedo-Cardenas O, Conneely OM. Comparative distribution of nurr1 and nur77 nuclear receptors in the mouse central nervous system. J Mol Neurosci 1996; 7(1):51–63.

    Article  PubMed  CAS  Google Scholar 

  63. Xiao Q, Castillo S, Nikodem V. Distribution of messenger RNAs for the orphan nuclear receptors Nurr1 and Nur77 (NGFI-B) in adult rat brain using in situ hybridization. Neuroscience 1996; 75(1):221–30.

    Article  PubMed  CAS  Google Scholar 

  64. Bäckman C, Perlmann T, Wallén A et al. A selective group of dopaminergic neurons express nurr1 in the adult mouse brain. Brain Res 1999; 851(1–2):125–132.

    Article  PubMed  Google Scholar 

  65. Saucedo-Cardenas O, Quintana-Hau JD, Le WD et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 1998; 95(7):4013–8.

    Article  PubMed  CAS  Google Scholar 

  66. Le W, Conneely O, Zou L et al. Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp Neurol 1999; 159(2):451–8.

    Article  PubMed  CAS  Google Scholar 

  67. Smits SM, Ponnio T, Conneely OM et al. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur Jneurosci 2003; 18(7):1731–8.

    Article  Google Scholar 

  68. A WA, Castro D, Zetterström R et al. Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci 2001; 18(6):649–63.

    Article  CAS  Google Scholar 

  69. Saucedo-Cardenas O, Quintana-Hau J, Le W et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 1998; 95(7):4013–8.

    Article  PubMed  CAS  Google Scholar 

  70. Joseph B, Wallén-Mackenzie A, Benoit G et al. p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci USA 2003; 100(26):15619–24.

    Article  PubMed  CAS  Google Scholar 

  71. Perlmann T, Jansson L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev 1995; 9(7):769–82.

    Article  PubMed  CAS  Google Scholar 

  72. Aarnisalo P, Kim CH, Lee JW et al. Defining requirements for heterodimerization between the retinoid X receptor and the orphan nuclear receptor Nurr1. J Biol Chem 2002; 277(38):35118–23.

    Article  PubMed  CAS  Google Scholar 

  73. Wallen-Mackenzie A, deUrquiza AM, Petersson S et al. Nurr1-RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev 2003; 17(24):3036–47.

    Article  PubMed  CAS  Google Scholar 

  74. deUrquiza AM, Liu S, Sjöberg M et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000; 290(5499):2140–2144.

    Article  CAS  Google Scholar 

  75. Kitagawa H, Ray WJ, Glantschnig H et al. A regulatory circuit mediating convergence between nurr1 transcriptional regulation and wnt signaling. Mol Cell Biol 2007; 27(21):7486–7496.

    Article  PubMed  CAS  Google Scholar 

  76. Sacchetti P, Carpentier R, Ségard P et al. Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor nurr1. Nucleic Acids Res 2006; 34(19):5515–5527.

    Article  PubMed  CAS  Google Scholar 

  77. Gil M, McKinney C, Lee MK et al. Regulation of gtp cyclohydrolase i expression by orphan receptor nurr1 in cell culture and in vivo. J Neurochem 2007; 101(1):142–150.

    Article  PubMed  CAS  Google Scholar 

  78. Jankovic J, Chen S, Le WD. The role of nurr1 in the development of dopaminergic neurons and parkinson’s disease. Prog Neurobiol 2005; 77(1–2):128–138.

    Article  PubMed  CAS  Google Scholar 

  79. Hermanson E, Joseph B, Castro D et al. Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 2003; 288(2):324–34.

    Article  PubMed  CAS  Google Scholar 

  80. Luo Y, Henricksen LA, Giuliano RE et al. Vip is a transcriptional target of nurr1 in dopaminergic cells. Exp Neurol 2007; 203(1):221–232.

    Article  PubMed  CAS  Google Scholar 

  81. Volpicelli F, Caiazzo M, Greco D et al. Bdnf gene is a downstream target of nurr1 transcription factor in rat midbrain neurons in vitro. J Neurochem 2007; 102(2):441–453.

    Article  PubMed  CAS  Google Scholar 

  82. Pirih FQ, Tang A, Ozkurt IC et al. Nuclear orphan receptor Nurr1 directly transactivates the osteocalcin gene in osteoblasts. J Biol Chem 2004; 279(51):53167–74.

    Article  PubMed  CAS  Google Scholar 

  83. Bassett MH, Suzuki T, Sasano H et al. The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. Mol Endocrinol 2004; 18(2):279–90.

    Article  PubMed  CAS  Google Scholar 

  84. Hermanson E, Borgius L, Bergsland M et al. Neuropilin1 is a direct downstream target of Nurr1 in the developing brain stem. J Neurochem 2006; 97(5):1403–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten P. Smidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Smidt, M.P., Peter, J., Burbach, H. (2009). Terminal Differentiation of Mesodiencephalic Dopaminergic Neurons:. In: Pasterkamp, R.J., Smidt, M.P., Burbach, J.P.H. (eds) Development and Engineering of Dopamine Neurons. Advances in Experimental Medicine and Biology, vol 651. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0322-8_4

Download citation

Publish with us

Policies and ethics