Skip to main content

Semiconductor Lasers

  • Chapter
  • First Online:
Fiber Optics Engineering

Part of the book series: Optical Networks ((OPNW))

  • 2535 Accesses

In this chapter we discuss the basic principles of operation of semiconductor lasers. These devices are by far the most common optical source in fiber optic communication. Properties such as high-speed modulation capability, high efficiency, wavelengths in the infrared communication band, small size, and high reliability make these devices an indispensable part of fiber optic links. This chapter starts with the theory of light amplifiers and oscillators. Next we discuss optical amplification in semiconductors, which is the basis of semiconductor lasers. We will also introduce the rate equations, which are an essential tool in understanding the behavior of semiconductor lasers. Next we will study various properties of these lasers, both in frequency and in time domains. Finally, we will review some of the practical semiconductor devices in use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumption is valid as long as the power is low enough for amplifier not to saturate.

  2. 2.

    Normally, we express power quantities by P. However, because in rate equations P is usually reserved for photon density, here we use L for output power. This choice is also consistent with the standard notation of denoting the current–light characteristic of the laser as LI curve.

References

  1. S. Boutami et al., “Vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Optics Express, Vol. 15, pp.12443–12449, 2007

    Article  Google Scholar 

  2. T. Steinmetz et al., “Stable fiber-based Fabry-Perot cavity” Applied Physics Letters, Vol. 89, Article Number 111110, 2006

    Google Scholar 

  3. Y. D. Jeong et al., “Tunable single-mode Fabry-Perot laser diode using a built-in external cavity and its modulation characteristics,” Optics Letters, Vol. 31, pp. 2586–2588, 2006

    Article  MathSciNet  Google Scholar 

  4. B. G. Streetman, Solid State Electronic Devices , Prentice-Hall, Englewood Cliffs, NJ, 1990

    Google Scholar 

  5. W. E. Lamb, “Theory of optical maser”, Physical Review A, Vol. 134, pp. 1429–1450, 1964

    Article  Google Scholar 

  6. M. Scully and W. E. Lamb, “Quantum theory of an optical maser,” Physical Review Letters, Vol. 16, pp. 853–855, 1966

    Article  Google Scholar 

  7. M. Scully and W. E. Lamb, “Quantum theory of an optical maser, 1. General theory,” Physical Review, Vol. 159, pp. 208–226, 1967

    Article  Google Scholar 

  8. M. Scully and W. E. Lamb, “Quantum theory of an optical maser, 2. Spectral profile,” Physical Review, Vol. 166, pp. 246–249, 1968

    Article  Google Scholar 

  9. M. Johnsson et al., “Semiclassical limits to the linewidth of an atom laser,” Physical Review A, Vol. 75, Article Number 043618, 2007

    Google Scholar 

  10. A. Yariv, “Dynamic analysis of the semiconductor laser as a current-controlled oscillator in the optical phased-lock loop: applications,” Optics Letters, Vol. 30, pp. 2191–2193, 2005

    Article  Google Scholar 

  11. S. Stenholm and W. E. Lamb, “Theory of a high intensity laser,” Physical Review, Vol. 181, pp. 618–635, 1969

    Article  Google Scholar 

  12. M. Azadeh and L. W. Casperson, “Field solutions for bidirectional high-gain laser amplifiers and oscillators,” Journal of Applied Physics, Vol. 83, pp. 2399–2407, 1998

    Article  Google Scholar 

  13. P. Szczepanski, ”Semiclassical theory of multimode operation of a distributed feedback laser,” IEEE Journal of Quantum Electronics, Vol. 24, pp. 1248–1257, 1988

    Article  Google Scholar 

  14. L. W. Casperson, “Laser power calculations, sources of error,” Applied Optics, Vol. 19, pp. 422–434, 1980

    Article  Google Scholar 

  15. S. Foster and A. Tikhomirov, “Experimental and theoretical characterization of the mode profile of single-mode DFB fiber lasers,” IEEE Journal of Quantum Electronics, Vol. 41, pp. 762–766, 2005

    Article  Google Scholar 

  16. C. Etrich, P. Mandel, N. B. Abraham, and H. Zeghlache, “Dynamics of a two-mode semiconductor laser,” IEEE Journal of Quantum Electronics, Vol. 28, pp. 811–821, 1992

    Article  Google Scholar 

  17. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits , John Wiley & Sons, New York, 1995

    Google Scholar 

  18. F. Habibullah and W. P. Huang, “A self-consistent analysis of semiconductor laser rate equations for system simulation purpose,” Optics Communications, Vol. 258, pp. 230–242, 2006

    Article  Google Scholar 

  19. J. T. Verdeyen, Laser Electronics , 3rd Ed., Prentice Hall, Englewood Cliffs, NJ, 1995

    Google Scholar 

  20. P. V. Mena et al., “A comprehensive circuit-level model of vertical-cavity surface-emitting lasers,” Journal of Lightwave Technology, Vol. 17, pp. 2612–2632, 1999

    Article  Google Scholar 

  21. N. Bewtra, et al., “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, pp. 331–340, 1995

    Article  Google Scholar 

  22. A. Haug, “Theory of the temperature dependence of the threshold current of an InGaAsP laser,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 716–718, 1985

    Article  Google Scholar 

  23. A. Haug, “On the temperature dependence of InGaAsP semiconductor lasers,” Physica Status Solidi (B) Basic Solid State Physics, Vol. 194, pp. 195–198, 1996

    Article  Google Scholar 

  24. M. Montes et al., “Analysis of the characteristic temperatures of (Ga,In)(N,As)/GaAs laser diodes,” Journal of Applied Physics D-Applied Physics, Vol. 41, Article Number 155102, 2008

    Google Scholar 

  25. K. Lau and A. Yariv, “Ultra-high speed semiconductor lasers,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 121–138, 1985

    Article  Google Scholar 

  26. C. Y. Tsai et al., “A small-signal analysis of the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape,” IEEE Journal of Quantum Electronics, Vol. 33, pp. 2084–2096, 1997

    Article  Google Scholar 

  27. N. Dokhane and G. L. Lippi, “Improved direct modulation technique for faster switching of diode lasers,” IEE Proceedings Optoelectronics, Vol. 149, pp. 7–16, 2002

    Article  Google Scholar 

  28. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE Journal of Quantum Electronics,” Vol. 18, pp. 582–595, 1982

    Article  Google Scholar 

  29. S. Odermatt and B. Witzigmann, “A microscopic model for the static and dynamic lineshape of semiconductor lasers,” IEEE Journal of Quantum Electronics, Vol. 42, pp. 538–551, 2006

    Article  Google Scholar 

  30. G. Agrawal, “Power spectrum of directly modulated single-mode semiconductor lasers: Chirp-induced fine structure,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 680–686, 1985

    Article  Google Scholar 

  31. N. K. Dutta et al., “Frequency chirp under current modulation in InGaAsP injection lasers,” Journal of Applied Physics, Vol. 56, pp. 2167–2169, 1984

    Article  Google Scholar 

  32. P. J. Corvini and T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” Journal of Lightwave Technology, Vol. 5, pp. 1591–1595, 1987

    Article  Google Scholar 

  33. T. L. Koch and R. A. Linke, “RA effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Applied Physics Letters, Vol. 48, pp. 613–615, 1986

    Article  Google Scholar 

  34. Y. Yoshida et al., “Analysis of characteristic temperature for InGaAsP BH lasers with p-n-p-n blocking layers using two-dimensional device simulator,” IEEE Journal of Quantum Electronics, Vol. 34, pp. 1257–1262, 1998

    Article  Google Scholar 

  35. J. Jin, J. Shi, and D. Tian, “Study on high-temperature performances of 1.3-μm InGaAsP-InP strained multiquantum-well buried-heterostructure lasers,” IEEE Photonics Technology Letters, Vol. 17, pp. 276–278, 2005

    Article  Google Scholar 

  36. Y. Sakata et al., “All-selectively MOVPE 1.3-μm strained multi-quantum-well buried-heterostructure laser diodes,” IEEE Journal of Quantum Electronics, Vol. 35, pp. 368–376, 1999

    Article  Google Scholar 

  37. H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters , John Wiley and Sons, New York, 2003

    Google Scholar 

  38. E. Garmine, “Sources, modulators, and detectors for fiber optic communication systems” in Fiber Optics Handbook , edited by Michael Bass, McGraw-Hill, New York, 2002

    Google Scholar 

  39. F. Koyama, “Recent advances of VCSEL photonics,” Journal of Lightwave Technology, Vol. 24, pp. 4502–4513, 2006

    Article  Google Scholar 

  40. K. Iga, “Surface-emitting laser-Its birth and generation of new optoelectronics field,” IEEE Journal of Selected Topics in Quantum Electron, Vol. 6, pp. 1201–1215, 2000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azadeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Azadeh, M. (2009). Semiconductor Lasers. In: Fiber Optics Engineering. Optical Networks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0304-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0304-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0303-7

  • Online ISBN: 978-1-4419-0304-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics