Bone Formation Versus Bone Resorption in Ankylosing Spondylitis

  • Georg Schett
Part of the Advances in Experimental Medicine and Biology book series (volume 649)


Ankylosing spondylitis (AS) and other forms of seronegative spondylarthritis (SpA) are characterized by two major processes in joints—the first is chronic inflammation and the second is progressive ankylosis. Both features go hand-in-hand and determine the clinical picture of disease, which is joint pain, progressive stiffness and, in case of peripheral joint involvement also joint swelling. The interplay between inflammation and ankylosis is best illustrated in AS, where chronic inflammation of the spine leads to progressive stiffness, reduced spinal mobility and kyphosis. AS may thus be considered as a synthesis of inflammatory disease and bone disease.


Bone Formation Ankylose Spondylitis Psoriatic Arthritis Hypertrophic Chondrocytes Osteophyte Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braun J, Landewé R, Hermann KG et al. Major reduction in spinal inflammation in patients with ankylosing spondylitis after treatment with infliximab: Results of a multicenter, randomized, double-blind, placebo-controlled magnetic resonance imaging study. Arthritis Rheum 2006; 54:1646–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Davis J, van der Heijde D, Braun J et al. Recombinant human tumor necrosis factor receptor (Etanercept) for treating ankylosing spondylitis A randomized, controlled trial. Arthritis Rheum 2003; 48:3230–6PubMedCrossRefGoogle Scholar
  3. 3.
    van der Heijde D, Kivitz A, Schiff M et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: Results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2006:54:2136–2.PubMedCrossRefGoogle Scholar
  4. 4.
    Schett G, Landewé R, Desiree van der Heijde D. TNF blockers and structural remodeling in ankylosing spondylitis-what is reality and what is fiction? Ann Rheum Dis 2007; 66:709–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Schett G, Redlich K, Smolen JS. Inflammation-induced bone loss in the rheumatic diseases. In: Favus MJ, Ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th Edition. Washington D.C.: ASBMR, 2006; 6:310–313.Google Scholar
  6. 6.
    Gravallese EM, Harada Y, Wang JT et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 1998; 152:943–951.PubMedGoogle Scholar
  7. 7.
    Boers M, Kostense PJ, Verhoeven AC et al. Inflammation and damage in an individual joint predict further damage in that joint in patients with early rheumatoid arthritis. Arthritis Rheum 2001; 44:2242–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Scott DL, Pugner K, Kaarela K et al. The links between joint damage and disability in rheumatoid arthritis. Rheumatology (Oxford) 2000; 39:122–132.CrossRefGoogle Scholar
  9. 9.
    Storm EE, Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 1996; 122:3969–79.PubMedGoogle Scholar
  10. 10.
    Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 2001; 104:341–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Benjamin M, McGonagle D. The anatomical basis for disease localization in seronegative spondylar-thropathy at entheses and related sites. J Anat 2001; 199:503–526.PubMedCrossRefGoogle Scholar
  12. 12.
    Ball J. Enthesopathy of rheumatoid and ankylosing spondylitis. Ann Rheum Dis 1971; 30(3):213–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest 2005; 115:1571–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Appel H, Kuhne M, Spiekermann S et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 2006; 54(9):2845–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Scharstuhl A, Vitters EL, van der Kraan PM et al. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum 2003; 48:3442–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Lories RJ, Derese I, de Bari C et al. Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondylarthritis. Arthritis Rheum 2007; 56(2):489–97.PubMedCrossRefGoogle Scholar
  17. 17.
    Lories RJ, Matthys P, de Vlam K et al. Ankylosing enthesitis, dactylitis and onychoperiostitis in male DBA/1 mice: a model of psoriatic arthritis. Ann Rheum Dis 2004; 63(5):595–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller JR. The Wnts. Genome Biol 2002; 3(1):3001.Google Scholar
  19. 19.
    Diarra D, Stolina M, Polzer K et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13:156–163.PubMedCrossRefGoogle Scholar
  20. 20.
    Lories R, Peeters J, Bakker A et al. Deletion of Frzb affects articular cartilage and biomechanical poperties of the long bones. Arthritis Rheum 2007, in press.Google Scholar
  21. 21.
    McInnes I, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Immunol 2007; 7:429–442.CrossRefGoogle Scholar
  22. 22.
    Gough AK, Lilley J, Eyre S et al. Generalized bone loss in patients with early rheumatoid arthritis. Lancet 1994; 344:23–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Ralston SH, Urquhart GD, Brzeski M et al. Prevalence of vertebral compression fractures due to osteoporosis in ankylosing spondylitis. BMJ 1990; 300:563–565.PubMedCrossRefGoogle Scholar
  24. 24.
    Schett G, Kiechl S, Weger S et al. High-sensitivity C-reaktive protein and risk of nontraumatic fractures in the bruneck study. Arch Int Med 2006; 166:2495–501.CrossRefGoogle Scholar
  25. 25.
    Appel H, Loddenkemper C, Grozdanovic Z et al. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther 2006; 22:R143.CrossRefGoogle Scholar
  26. 26.
    Jimenez-Boj E, Nobauer-Huhmann I, Hanslik-Schnabel B et al. Bone erosions and bone marrow edema as defined by magnetic resonance imaging reflect true bone marrow inflammation in rheumatoid arthritis. Arthritis Rheum 2007; 56:1118–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Gortz B, Hayer S, Redlich K et al. Arthritis induces lymphocytic bone marrow inflammation and endosteal bone formation. J Bone Miner Res 2004; 19(6):990–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Glass DA, Bialek P, Ahn JD et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005; 8:751–64.PubMedCrossRefGoogle Scholar
  29. 29.
    van der Heijde DM, Landewé RB, Ory P et al. Two-year etanercept therapy does not inhibit radiographic progression in patients with ankylosing spondylitis. Ann Rheum Dis 2006; 65(Suppl II):81.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Georg Schett
    • 1
  1. 1.Department of Internal Medicine 3 Institute for Clinical ImmunologyUniversity of Erlangen, NürembergErlangenGermany

Personalised recommendations