Innate Immunity of Spondyloarthritis: The Role of Toll-Like Receptors

  • Robert D. Inman
Part of the Advances in Experimental Medicine and Biology book series (volume 649)


Amongst the spondyloarthropathies (SpA), the relationship of host susceptibility and environmental triggers is best seen in reactive arthritis (ReA). There are several points from the clinical studies of ReA which highlight important unresolved issues in the pathogenesis. Innate and adaptive immune responses are distinct, but complementary aspects of host defense (Pacheco-Tena et al, 2002, Beutler et al, 2006). Innate immunity is critically dependent upon nonvariant, genetically encoded receptors for highly conserved structures known as pathogen-associated molecular patterns (PAMP). The receptors themselves are termed pattern-recognition receptors (PRR). Among the PRR, toll-like receptors (TLR) play a central role.


Ankylose Spondylitis Innate Immunity Adaptive Immune Response TLR2 Expression Reactive Arthritis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Granfors K, Marilahti Palo R, Luukkainen R et al. Persistence of yersinia antigens in peripheral blood cell from patients with yersinia enterocolitica 0:3 infection with or without reactive arthritis. Arthritis Rheum 1998; 41:855–862.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilkinson NZ, Kingsley GH, Sieper J et al. Lack of correlation between detection of chlamydia trachomatis DNA in synovial fluid from patients with a range of rheumatic diseases and the presence of an antichlamydial immune response. Arthritis Rheum 1999; 41:845–854.CrossRefGoogle Scholar
  3. 3.
    Thomson GTD, DeRubeis DA, Hodge MA et al. Post-salmonella reactive arthritis. Late sequelae in a point source cohort. Am J Med 1995; 98:13–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Pacheco Tena C, Zhang X, Stone M et al. Innate immunity in host-microbial interactions: beyond B27 in the spondyloarthropathies. Curr Opin Rheumatol 2002; 14:373–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Beutler B, Jiang Z, Georgel P et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Ann Rev Immunol 2006; 24:353–389.CrossRefGoogle Scholar
  6. 6.
    Kaisho T, Akira S. Dendritic cell function in toll-like receptor and MyD88-knockout mice. Trends Immunol 2001; 22:78–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Means TK, Wang S, Lien E et al. Human toll-like receptors mediate cellular activation by mycobacterium tuberculosis. J Immunol 1999; 163:3920–3927.PubMedGoogle Scholar
  8. 8.
    Akira S, Hoshino K, Kaisho T. The role of toll-like receptors and myD88 in innate immune responses. J Endotoxin Res 2000; 6:383–387.PubMedGoogle Scholar
  9. 9.
    Fitzgerald KA, Paisson-McDermott EM et al. Mal (myD88-adapter-like) is required for TLR4 signal transduction. Nature 2001; 413:78–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Thoma-Uszynski S, Kiertscher SM, Ochoa MT et al. Activation of TLR2 on human dendritic cells triggers induction of IL-12, but not IL-10. J Immunol 2000; 165:3804–3810.PubMedGoogle Scholar
  11. 11.
    Tsuji S, Matsumoto M, Takeuchi O et al. Maturation of human dendritic cells by cell wall skeleton of mycobacterium BCG: involvement of toll-like receptors. Infect Immun 2000; 68:6883–6890.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferwerda B, McCall MB, Alonso S et al. TLR4 polymorphisms, infectious diseases and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci USA 2007; 104:16645–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Divanovic S, Trompette A, Atabani SF et al. Negative regulation of toll-like receptor 4 signaling by the toll-like receptor homolog RP105. Nat Immunol 2005; 6:571–578.PubMedCrossRefGoogle Scholar
  14. 14.
    Sutmuller RP, den Brok MH, Kramer M et al. Toll-like receptor 2 controls expansion and function of regulatory T-cells. J Clin Invest 2006; 116:485–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang X, Glogauer M, Zhu F et al. Innate immunity and arthritis: neutrophil rac and toll-like receptor 4 expression define outcomes in infection-triggered arthritis. Arthritis Rheum 2005; 52:1297–304.PubMedCrossRefGoogle Scholar
  16. 16.
    Inman RD, Chiu B. Synoviocyte-packaged chlamydia trachomatis induces a chronic aseptic arthritis. J Clin Invest 1998; 102:1776–1782.PubMedCrossRefGoogle Scholar
  17. 17.
    Inman RD, Chiu B. Cytokine profiles in the joint define pathogen clearance and severity in chlamydia-induced arthritis. Arthritis Rheum 2006; 54:499–507.PubMedCrossRefGoogle Scholar
  18. 18.
    Kyo F, Futani H, Matsui K et al. Endogenous interleukin-6, but not tumor necrosis factor alpha, contributes to the development of toll-like receptor 4/myeloid differentiation factor 88-mediated acute arthritis in mice. Arthritis Rheum 2005; 52:2530–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Abdollahi-Roodsaz S, Joosten LA, Roelofs MF et al. Inhibition of toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum 2007; 56:2957–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Van Lent PLEM, Blom AB, Grevers L et al. Toll-like receptor 4 induced FcγR expression potentiates early onset of joint inflammation and cartilage destruction during immune complex arthritis: Toll-like receptor 4 largely regulates FcγR expression by interleukin 10. Ann Rheum Dis 2007; 66:334–340.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim TH, Payne U, Zhang X et al. Altered host: pathogen interactions conferred by the blau syndrome mutation of NOD2. Rheumatol Int 2007; 27:257–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Radstake TR, Franke B, Hanssen S et al. The toll-like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity and/or outcome. Arthritis Rheum 2004; 50:999–1001.PubMedCrossRefGoogle Scholar
  23. 23.
    Roelofs MF, Joosten LAB, Abdollahi Roodsaz SA et al. The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4 and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum 2005; 52:2313–2322.PubMedCrossRefGoogle Scholar
  24. 24.
    Baeten D, Kruithof E, De Rycke L et al. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther 2005; 7:R359–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Baeten D, Demetter P, Cuvelier CA et al. Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol 2002; 196:343–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Baeten D, M/ℓler HJ, Delanghe J et al. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis. Arthritis Rheum 2004; 50:1611–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Huang QQ, Ma Y, Adebayo A et al. Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis. Arthritis Rheum 2007; 56:2192–2201.PubMedCrossRefGoogle Scholar
  28. 28.
    De Rycke L, Vandooren B, Kruithof E et al. Tumor necrosis factor-α blockade treatment down-modulates the increased systemic and local expression of toll-like receptor 2 and toll-like receptor 4 in spondylarthropathy. Arthritis Rheum 2005; 52:2146–2158.PubMedCrossRefGoogle Scholar
  29. 29.
    Netea MG, Radstake T, Joosten LA et al. Salmonella septicemia in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: association with decreased interferon-gamma production and toll-like receptor 4 expression. Arthritis Rheum 2003; 48:1853–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Flagg SD, Meador R, Hsia E et al. Decreased pain and synovial inflammation after etanercept therapy in patients with reactive and undifferentiated arthritis: an open-label trial. Arthritis Rheum 2005; 53:613–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Candia L, Marquez J, Hernandez C et al. Toll-like receptor-2 expression is upregulated in antigen-presenting cells from patients with psoriatic arthritis: a pathogenic role for innate immunity? J Rheumatol 2007; 34:374–9.PubMedGoogle Scholar
  32. 32.
    Baker BS, Ovigne JM, Powles AV et al. Normal keratinocytes express toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 2003; 148:670–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Curry JL, Qin JZ, Bonish B et al. Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 2003; 127:178–86.PubMedGoogle Scholar
  34. 34.
    Raffeiner B, Dejaco C, Duftner C et al. Between adaptive and innate immunity: TLR4-mediated perforin production by CD28null T-helper cells in ankylosing spondylitis. Arth Res Ther 2005; 7:1412–1420.CrossRefGoogle Scholar
  35. 35.
    Adam R, Sturrock RD, Gracie JA. TLR4 mutations (Asp299Gly and Thr399Ile) are not associated with ankylosing spondylitis. Ann Rheum Dis 2006; 65:1099–101.PubMedCrossRefGoogle Scholar
  36. 36.
    Van der Paardt M, Crusius JB, de Koning MH et al. No evidence for involvement of the toll-like receptor 4 (TLR4) A896G and CD14-C260T polymorphisms in susceptibility to ankylosing spondylitis. Ann Rheum Dis 2005; 64:235–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Snelgrove T, Lim S, Greenwood C et al. Association of toll-like receptor 4 variants and ankylosing spondylitis: a case-control study. J Rheumatol 2007; 34:368–70.PubMedGoogle Scholar
  38. 38.
    Inman RD, Chiu B, Johnston MEA et al: HLA class I-related impairment in IL-2 production and lymphocyte response to microbial antigens in reactive arthritis. J Immunol 1989; 142:4256–4260.PubMedGoogle Scholar
  39. 39.
    Inman RD, Rohekar S, Riarrh R et al. TLR2, but not TLR4, variants are associated with reactive arthritis. Arthritis Rheum 2007; 56:S515.Google Scholar
  40. 40.
    Merx S, Neumaier M, Wagner H et al. Characterization and investigation of single nucleotide polymorphisms and a novel TLR2 mutation in the human TLR2 gene. Hum Mol Genet 2007; 16:1225–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Berdeli A, Celik HA, Ozyurek R et al. TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children. J Mol Med 2005; 83:535–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Henckaerts L, Pierik M, Joossens M et al. Mutations in pattern recognition receptor genes modulate seroreactivity to microbial antigens in patients with inflammatory bowel disease. Gut 2007; 56:1536–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Reveille JD, Zhou X, Ward MM et al. The IL23R Gene is a major determinant of susceptibility to but not severity of ankylosing spondylitis. Arthritis Rheum 2007; 56:S529.Google Scholar
  44. 44.
    Rahman P, Inman RD, Gladman DD et al. Association of interleukin-23R variants with ankylosing spondylitis. Arthritis Rheum 2007; 56:S529.Google Scholar
  45. 45.
    Ciccia F, Bombardieri M, Principato A et al. IL-23 over expression as immunological signature of subclinical intestinal inflammation in patients with AS. Ann Rheum Dis 2007; 66:83.Google Scholar
  46. 46.
    De Jager PL, Franchimont D, Waliszewska A et al. The role of the toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun 2007; 8:387–97.PubMedCrossRefGoogle Scholar
  47. 47.
    Picard C, Casanova JL, Abel L. Mendelian traits that confer predisposition or resistance to specific infections in humans. Curr Opin Immunol 2006; 18:383–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Hawn TR, Verbon A, Lettinga KD et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 2003; 198:1563–72.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Robert D. Inman
    • 1
  1. 1.Toronto Western HospitalUniversity of TorontoTorontoCanada

Personalised recommendations