KIR Genes and Their Role in Spondyloarthropathies

  • Roberto Díaz-Peña
  • Miguel Ángel Blanco-Gelaz
  • Carlos López-Larrea
Part of the Advances in Experimental Medicine and Biology book series (volume 649)


Cellular activity of natural killer cells (NK cells) is defined by the balance between activating and inhibitory signals coming from their receptors. With respect to this response, killer immunoglobulin-like receptors (KIR) are unique because of their diversity and capacity to recognize specific human leukocyte antigen (HLA) class I allotypes. Up to the present few studies have experimentally been developed concerning the role of KIR genes in spondyloarthropathies (SpA) and its clear relationship with HLA-B27. However, the role of the HLA-B27 heavy chain homodimers and their possible recognition by KIR receptors in the pathogenesis of spondylarthritides has been studied. Moreover, it has been suggested that NK cells and their receptors could play a role in ankylosing spondylitis (AS) development. Several association studies based on a model in which KIRs synergize with HLAs have also been published. This interaction may generate compound genotypes which provide different levels of activation or inhibition. Furthermore, some of these have been associated with certain SpA, such as ankylosing spondylitis (AS) and psoriatic arthritis (PsA).


Natural Killer Cell Ankylo Sing Spondylitis Human Leucocyte Antigen Human Leucocyte Antigen Class Natural Killer Cell Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    French RA, Yokoyama WM. Natural killer cells and autoimmunity. Arthritis Res Ther 2004; 6(1):8–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Ljunggren HG, Kärre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990; 11(7):237–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Lanier LL. NK cell recognition. Annu Rev Immunol 2005; 23:225–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Khakoo SI, Carrington M. KIR and disease: A model system or system of models?. Immunol Rev 2006; 214:186–201.PubMedCrossRefGoogle Scholar
  5. 5.
    Williams AP, Bateman AR, Khakoo SI. Hanging in the balance. KIR and their role in disease. Mol Interv 2005; 5(4):226–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Brewerton DA, Hart FD, Nicholls A et al. Ankylosing spondylitis and HL-A 27. Lancet 1973; 1(7809):904–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Brewerton DA, Caffrey M, Nicholls A et al. Reiter’s disease and HL-A 27. Lancet 1973; 2(7836):996–8.CrossRefGoogle Scholar
  8. 8.
    Schlosstein L, Terasaki PI, Bluestone R et al. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 1973; 288(14):704–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today 1990; 11(4):137–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Kollnberger S, Chan A, Sun MY et al. Interaction of HLA-B27 homodimers with KIR3DL1 and KIR3DL2, unlike HLA-B27 heterotrimers, is independent of the sequence of bound peptide. Eur J Immunol 2007; 37(5):1313–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Azuz-Lieberman N, Markel G, Mizrahi S et al. The involvement of NK cells in ankylosing spondylitis. Int Immunol 2005; 177):837–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Lanier LL, Corliss BC, Wu J et al. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 1998; 391(6668):703–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Olcese L, Cambiaggi A, Semenzato G et al. Human killer cell activatory receptors for MHC class I molecules are included in a multimeric complex expressed by natural killer cells. J Immunol 1997; 158(11):5083–6.PubMedGoogle Scholar
  14. 14.
    Kikuchi-Maki A, Catina TL, Campbell KS. Cutting edge: KIR2DL4 transduces signals into human NK cells through association with the Fc receptor gamma protein. J Immunol 2005; 174(7):3859–63.PubMedGoogle Scholar
  15. 15.
    Shilling HG, Guethlein LA, Cheng NW et al. Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J Immunol 2002; 168(5):2307–15.PubMedGoogle Scholar
  16. 16.
    Hsu KC, Chida S, Geraghty DE et al. The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol Rev 2002; 190:40–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Uhrberg M, Parham P, Wernet P. Definition of gene content for nine common group B haplotypes of the caucasoid population: KIR haplotypes contain between seven and eleven KIR genes. Immunogenetics 2002; 54(4):221–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Norman PJ, Carrington CV, Byng M et al. Natural killer cell immunoglobulin-like receptor (KIR) locus profiles in african and south asian populations. Genes Immun 2002; 3(2):86–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Jiang K, Zhu FM, Lv QF et al. Distribution of killer cell immunoglobulin-like receptor genes in the chinese han population. Tissue Antigens 2005; 65(6):556–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005; 5(3):201–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Yawata M, Yawata N, Moqueen KL et al. Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expresión. Immunogenetics 2002; 54(8):543–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Toneva M, Lepage V, Lafay G et al. Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens 2001; 57(4):358–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Gardiner CM, Guethlein LA, Shilling HG et al. Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J Immunol 2001; 166(5):2992–3001.PubMedGoogle Scholar
  24. 24.
    Pando MJ, Gardiner CM, Gleimer M et al. The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1. J Immunol 2003; 171(12):6640–9.PubMedGoogle Scholar
  25. 25.
    Yawata M, Yawata N, Draghi M et al. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 2006; 203(3):633–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Anfossi N, Doisne JM, Peyrat MA et al. Coordinated expression of Ig-like inhibitory MHC class I receptors and acquisition of cytotoxic function in human CD8+ T-cells. J Immunol 2004; 173(12):7223–9.PubMedGoogle Scholar
  27. 27.
    Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 1999; 189(7):1093–100.PubMedCrossRefGoogle Scholar
  28. 28.
    Cella M, Longo A, Ferrara GB et al. NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J Exp Med 1994; 180(4):1235–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Carr WH, Rosen DB, Arase H et al. Cutting edge: KIR3DS1, a gene implicated in resistance to progression to AIDS, encodes a DAP12-associated receptor expressed on NK cells that triggers NK cell activation. J Immunol 2007; 178(2):647–51.PubMedGoogle Scholar
  30. 30.
    Gumperz JE, Barber LD, Valiante NM et al. Conserved and variable residues within the Bw4 motif of HLA-B make separable contributions to recognition by the NKB1 killer cell-inhibitory receptor. J Immunol 1997; 158(11):5237–41.PubMedGoogle Scholar
  31. 31.
    Boyington JC, Motyka SA, Schuck P et al. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 2000; 405(6786):537–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Fan QR, Long EO, Wiley DC. Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1-HLA-Cw4 complex. Nat Immunol 2001; 2(5):452–60.PubMedGoogle Scholar
  33. 33.
    Rajagopalan S, Long EO. The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity. J Exp Med 1997; 185(8):1523–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Zappacosta F, Borrego F, Brooks AG et al. Peptides isolated from HLA-Cw*0304 confer different degrees of protection from natural killer cell-mediated lysis. Proc Natl Acad Sci USA 1997; 94(12):6313–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Rudolph MG, Luz JG, Wilson IA. Structural and thermodynamic correlates of T-cell signaling. Annu Rev Biophys Biomol Struct 2002; 31:121–49.PubMedCrossRefGoogle Scholar
  36. 36.
    Peruzzi M, Wagtmann N, Long EO. A p70 killer cell inhibitory receptor specific for several HLA-B allotypes discriminates among peptides bound to HLA-B*2705. J Exp Med 1996; 184(4):1585–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Peruzzi M, Parker KC, Long EO et al. Peptide sequence requirements for the recognition of HLA-B*2705 by specific natural killer cells. J Immunol 1996; 157(8):3350–6.PubMedGoogle Scholar
  38. 38.
    Stewart-Jones GB, di Gleria K, Kollnberger S et al. Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA-B*2705. Eur J Immunol 2005; 35(2):341–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Sims AM, Wordsworth BP, Brown MA. Genetic susceptibility to ankylosing spondylitis. Curr Mol Med 2004; 4(1):13–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Turner MJ, Sowders DP, DeLay ML et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 2005; 175(4):2438–48.PubMedGoogle Scholar
  41. 41.
    Gonzalez-Roces S, Alvarez MV, Gonzalez S et al. HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens 1997; 49(2):116–23.PubMedCrossRefGoogle Scholar
  42. 42.
    García-Fernández S, Gonzalez S, Miña Blanco A et al. New insights regarding HLA-B27 diversity in the asian population. Tissue Antigens 2001; 58(4):259–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Lopez de Castro JA, Alvarez I, Marcilla M et al. HLA-B27: A registry of constitutive peptide ligands. Tissue Antigens 2004; 63(5):424–45.CrossRefGoogle Scholar
  44. 44.
    López-Larrea C, Sujirachato K, Mehra NK et al. HLA-B27 subtypes in asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens 1995; 45(3):169–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Paladini F, Taccari E, Fiorillo MT et al. Distribution of HLA-B27 subtypes in sardinia and continental Italy and their association with spondylarthropathies. Arthritis Rheum 2005; 52(10):3319–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Reveille JK, Ball EJ, Khan MA. HLA-B27 and genetic predisposing factors in spondyloarthropathies. Curr Opin Rheumatol 2001; 13(4):265–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Said-Nahal R, Miceli-Richard C, Gautreau C et al. The role HLA genes in familial spondyloarthropathy: a comprehensive study of 70 multiplex families. Ann Rheum Dis 2002; 61(3):201–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Young Ho Lee, Young Hee Rho, Seong Jae Choi et al. Ankylosing spondylitis susceptibility loci defined by genome-search meta-analysis. J Hum Genet 2005; 50:453–459.CrossRefGoogle Scholar
  49. 49.
    Zhang G, Luo J, Bruckel J et al. Genetic studies in familial ankylosing spondylitis susceptibility. Arthritis and Rheumatism 2004; 50:2246–2254PubMedCrossRefGoogle Scholar
  50. 50.
    Laval SH, Timms A, Edwards S et al. Whole-genome screening in ankylosing spondylitis: evidence of nonMHC genetic-susceptibility loci. Am J Hum Genet 2001b; 68:918–926.PubMedCrossRefGoogle Scholar
  51. 51.
    Gumperz JE, Litwin V, Phillips JH et al. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 1995; 181(3):1133–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Martin MP, Gao X, Lee JH et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002; 31(4):429–34.PubMedGoogle Scholar
  53. 53.
    Gillespie GM, Bashirova A, Dong T et al. Lack of KIR3DS1 binding to MHC class I Bw4 tetramers in complex with CD8+ T-cell epitopes. AIDS Res Hum Retroviruses 2007; 23(3):451–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Lopez-Larrea C, Blanco-Gelaz MA, Torre-Alonso JC et al. Contribution of KIR3DL1/3DS1 to ankylosing spondylitis in human leukocyte antigen-B27 caucasian populations. Arthritis Res Ther 2006; 8(4):R101.PubMedCrossRefGoogle Scholar
  55. 55.
    Díaz-Peña R, Blanco-Gelaz MA, Suárez-Álvarez B et al. Activating KIR genes are associated with Ankylosing spondylitis in asian populations. In press, Human Immunology.Google Scholar
  56. 56.
    Litwin V, Gumperz J, Parham P et al. NKB1: A natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J Exp Med 1994; 180(2):537–43.PubMedCrossRefGoogle Scholar
  57. 57.
    Gumperz JE, Valiante NM, Parham P et al. Heterogeneous phenotypes of expression of the NKB1 natural killer cell class I receptor among individuals of different human histocompatibility leukocyte antigens types appear genetically regulated, but not linked to major histocompatibililty complex haplotype. J Exp Med 1996; 183(4):1817–27.PubMedCrossRefGoogle Scholar
  58. 58.
    Martin MP, Qi Y, Gao X et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 2007; 39(6):733–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Appel H, Kuon W, Kuhne M et al. The solvent-inaccessible Cys67 residue of HLA-B27 contributes to T-cell recognition of HLA-B27/peptide complexes. J Immunol 2004; 173(11):6564–73.PubMedGoogle Scholar
  60. 60.
    Allen RL, Raine T, Haude A et al. Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J Immunol 2001; 167(10):5543–7.PubMedGoogle Scholar
  61. 61.
    Kollnberger S, Bird L, Sun MY et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum 2002; 46(11):2972–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Nair RP, Stuart PE, Nistor I et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet 2006; 78(5):827–51.PubMedCrossRefGoogle Scholar
  63. 63.
    Martin MP, Nelson G, Lee JH et al. Cutting edge: Susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 2002; 169(6):2818–22.PubMedGoogle Scholar
  64. 64.
    Nelson GW, Martin MP, Gladman D et al. Cutting edge: Heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 2004; 173(7):4273–6.PubMedGoogle Scholar
  65. 65.
    Vilches C, de Pablo R, Herrero MJ et al. HLA-B73: An atypical HLA-B molecule carrying a Bw6-epitope motif variant and a B pocket identical to HLA-B27. Immunogenetics 1994; 40(2):166.PubMedCrossRefGoogle Scholar
  66. 66.
    Thananchai H, Gillespie G, Martin MP et al. Cutting Edge: Allele-specific and peptide-dependent interactions between KIR3DL1 and HLA-A and HLA-B. J Immunol 2007; 178(1):33–7.PubMedGoogle Scholar
  67. 67.
    Wei JC, Tsai WC, Lin HS et al. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology (Oxford) 2004; 43(7):839–42.CrossRefGoogle Scholar
  68. 68.
    Yamaguchi A, Tsuchiya N, Mitsui H et al. Association of HLA-B39 with HLA-B27-negative ankylosing spondylitis and pauciarticular juvenile rheumatoid arthritis in japanese patients. Evidence for a role of the peptide-anchoring B pocket. Arthritis Rheum 1995; 38(11):1672–7.PubMedCrossRefGoogle Scholar
  69. 69.
    López-Larrea C, Mijiyawa M, González S et al. Association of ankylosing spondylitis with HLA-B*1403 in a west african population. Arthritis Rheum 2002; 46(11):2968–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Chan AT, Kollnberger SD, Wedderburn LR et al. Immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum 2005; 52(11):3586–95.PubMedCrossRefGoogle Scholar
  71. 71.
    Yen JH, Moore BE, Nakajima T et al. Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid artritis. J Exp Med 2001; 193(10):1159–67.PubMedCrossRefGoogle Scholar
  72. 72.
    Majorczyk E, Pawlik A, Buszczek W et al. Associations of killer cell immunoglobulin-like receptor genes with complications of rheumatoid arthritis. Genes Immun 2007; 8(8):678–83.PubMedCrossRefGoogle Scholar
  73. 73.
    Yen JH, Lin CH, Tsai WC et al. Killer cell immunoglobulin-like receptor gene’s repertoire in rheumatoid arthritis. Scand J Rheumatol 2006; 35(2):124–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Momot T, Koch S, Hunzelmann N et al. Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 2004; 50(5):1561–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Takeno M, Shimoyama Y, Kashiwakura J et al. Abnormal killer inhibitory receptor expression on natural killer cells in patients with Behçet’s disease. Rheumatol Int 2004; 24(4):212–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Buszczek W, Mańczak M, Cislo M et al. Gene for the activating natural killer cell receptor, KIR2DS1, is associated with susceptibility to psoriasis vulgaris. Hum Immunol 2004; 65(7):758–66.CrossRefGoogle Scholar
  77. 77.
    Suzuki Y, Hamamoto Y, Ogasawara Y et al. Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris. J Invest Dermatol 2004; 122(5):1133–6.PubMedCrossRefGoogle Scholar
  78. 78.
    van der Slik AR, Koeleman BP, Verduijn W et al. KIR in type 1 diabetes: Disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes 2003; 52(10):2639–42.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Roberto Díaz-Peña
    • 1
  • Miguel Ángel Blanco-Gelaz
    • 1
  • Carlos López-Larrea
    • 1
  1. 1.Department of ImmunologyHospital Universitario Central de AsturiasOviedoSpain

Personalised recommendations