Implications of Structural and Thermodynamic Studies of HLA-B27 Subtypes Exhibiting Differential Association with Ankylosing Spondylitis

  • Andreas Ziegler
  • Bernhard Loll
  • Rolf Misselwitz
  • Barbara Uchanska-Ziegler
Part of the Advances in Experimental Medicine and Biology book series (volume 649)


Structural and thermodynamic properties of HLA-B27 molecules provide the basis for their function within the immune system and are probably also central for the understanding of the pathology of HLA-B27-associated diseases such as ankolysing spondylitis (AS). Several HLA-B27 alleles are AS-associated, whereas some are not, although the protein encoded by the former may differ in only a single amino acid exchange from those specified by the latter. This indicates that subtype-specific polymorphic residues play a key role in determining whether an HLA-B27 subtype is AS-associated or not and open the possibility to correlate structural, thermodynamic and functional characteristics of a given subtype with the disease association. Our studies involved X-ray crystallography and various other biophysical techniques to examine how several different peptides are accommodated within the binding groove of the molecules. The HLA-B*2705 and HLA-B*2709 subtypes, whose products differ in only a single amino acid residue of their heavy chains from each other, were primarily chosen for these analyses, but our studies have recently also been extended to the closely related subtypes HLA-B*2703, HLA-B*2704 and HLA-B*2706. The analyses reveal that structural and thermodynamic differences between HLA-B27 complexes may exist, depending on the peptide that is displayed. Furthermore, a viral peptide and two self-peptides were found that exhibit HLA-B27 subtype-dependent molecular mimicry, thereby providing a molecular basis to account for the subtype-dependent presence of autoreactive T-cells. Although these results do not exclude other theories for the pathogenesis of AS, they support the arthritogenic peptide hypothesis which envisages molecular mimicry between HLA-B27-presented foreign and self-peptides to explain the cross-reactivity of autoreactive T-cells that are found in HLA-B*2705-positive individuals, in particular when they suffer from AS.


Major Histocompatibility Complex Ankylose Spondylitis Major Histocompatibility Complex Class Binding Mode Molecular Mimicry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WTCCC TASC. A genome-wide scan of 14,000 nonsynonymous coding SNPs in 5,500 individuals: The wellcome trust case control consortium. Nat Genet 2007; 39:1329–1337.CrossRefGoogle Scholar
  2. 2.
    Khan MA, Mathieu A, Sorrentino R et al. The pathogenetic role of HLA-B27 and its subtypes. Autoimmun Rev 2007; 6:183–189.PubMedCrossRefGoogle Scholar
  3. 3.
    López de Castro JA. HLA-B27 and the pathogenesis of spondyloarthropathies. Immunol Lett 2007; 108:27–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Taurog JD. The mystery of HLA-B27: If it isn’t one thing, it’s another. Arthritis Rheum 2007; 56:2478–2481.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown MA. Breakthroughs in genetic studies of ankylosing spondylitis. Rheumatol 2008; 47:132–37.CrossRefGoogle Scholar
  6. 6.
    Fiorillo MT, Cauli A, Carcassi C et al. Two distinctive HLA haplotypes harbor the B27 alleles negatively or positively associated with ankylosing spondylitis in Sardinia: Implications for disease pathogenesis. Arthritis Rheum 2003; 48:1385–1389.PubMedCrossRefGoogle Scholar
  7. 7.
    Cascino I, Paladini F, Belfiore F et al. Identification of previously unrecognized predisposing factors for ankylosing spondylitis from analysis of HLA-B27 extended haplotypes in sardinia. Arthritis Rheum 2007; 56:2640–2651.PubMedCrossRefGoogle Scholar
  8. 8.
    Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today 1990; 11:137–142.PubMedCrossRefGoogle Scholar
  9. 9.
    Allen RL, O’Callaghan CA, McMichael AJ et al. Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure. J Immunol 1999; 162:5045–5048.PubMedGoogle Scholar
  10. 10.
    Colbert RA. HLA-B27 misfolding: A solution to the spondyloarthropathy conundrum? Mol Med Today 2000; 6:224–230.PubMedCrossRefGoogle Scholar
  11. 11.
    Uchanska-Ziegler B, Ziegler A. Ankylosing spondylitis: A β2m-deposition disease? Trends Immunol 2003; 24:73–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Luthra-Guptasarma M, Singh B. HLA-B27 lacking associated β2-microglobulin rearranges to auto-display or cross-display residues 169–181: A novel molecular mechanism for spondyloarthropathies. FEBS Lett 2004; 24:1–8.CrossRefGoogle Scholar
  13. 13.
    Penttinen MA, Heiskanen KM, Mohapatra R et al. Enhanced intracellular replication of Salmonella enteridis in HLA-B27-expressing human monocytic cells: Dependency on glutamic acid at position 45 in the B pocket of HLA-B27. Arthritis Rheum 2004; 50:2255–2263.PubMedCrossRefGoogle Scholar
  14. 14.
    Hammer RE, Maika SD, Ricjardson JA et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: An animal model of HLA-B27-associated human disorders. Cell 1990; 63:1099–1112.PubMedCrossRefGoogle Scholar
  15. 15.
    Lang HL, Jacobsen H, Ikemizu S et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002; 3:940–943.PubMedCrossRefGoogle Scholar
  16. 16.
    Bjorkman PJ, Saper MA, Samraoui B et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329:506–512.PubMedCrossRefGoogle Scholar
  17. 17.
    Madden DR, Gorga JC, Strominger JL et al. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 1991; 353:321–325.PubMedCrossRefGoogle Scholar
  18. 18.
    Madden DR, Gorga JC, Strominger JL et al. The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 1992; 70:1035–1048.PubMedCrossRefGoogle Scholar
  19. 19.
    Brewerton DA, Hart FD, Nicholls A et al. Ankylosing spondylitis and HLA-B27. Lancet 1973; 1:904–907.PubMedCrossRefGoogle Scholar
  20. 20.
    Schlosstein L, Terasaki PI, Bluestone R et al. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 1973; 288:704–706.PubMedCrossRefGoogle Scholar
  21. 21.
    Gaston H. Mechanisms of disease: The immunopathogenesis of spondyloarthropathies. Nat Clin Pract Rheumatol 2006; 2:383–392.PubMedCrossRefGoogle Scholar
  22. 22.
    Braun J, Sieper J. Ankylosing spondylitis. Lancet 2007; 369:1379–1390.PubMedCrossRefGoogle Scholar
  23. 23.
    Natarajan K, Li H, Mariuzza RA et al. MHC class I molecules, structure and function. Rev Immunogenet 1999; 1:32–46.PubMedGoogle Scholar
  24. 24.
    Borrego F, Kabat J, Kim DK et al. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol 2002; 38:637–660.PubMedCrossRefGoogle Scholar
  25. 25.
    Madden DR. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol 1995; 13:587–622.PubMedCrossRefGoogle Scholar
  26. 26.
    Dangoria NS, DeLay M, Kingsbury DJ et al. HLA-B27 misfolding is associated with aberrant inter-molecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 2002; 277:23459–23468.PubMedCrossRefGoogle Scholar
  27. 27.
    López-Larrea C, Sujirachato K, Mehra NK et al. HLA-B27 subtypes in asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens 1995; 45:169–176.PubMedCrossRefGoogle Scholar
  28. 28.
    Gonzalez-Roces S, Alvarez MV, Gonzalez S et al. HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens 1997; 49:116–123.PubMedCrossRefGoogle Scholar
  29. 29.
    D’Amato M, Fiorillo MT, Carcassi C et al. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol 1995; 25:3199–3201.PubMedCrossRefGoogle Scholar
  30. 30.
    Nasution AR, Mardjuati A, Kunmartini S et al. HLA-B27 subtypes positively and negatively associated with spondyloarthropathy. J Rheumatol 1997; 24:1111–1114.PubMedGoogle Scholar
  31. 31.
    Ramos M, Paradela A, Vazquez M et al. Differential association of HLA-B*2705 and B*2709 to ankylosing spondylitis correlates with limited peptide subsets but not with altered cell surface stability. J Biol Chem 2002; 277:28749–28756.PubMedCrossRefGoogle Scholar
  32. 32.
    Sesma L, Montserrat V, Lamas JR et al. The peptide repertoires of HLA-B27 subtypes differentially associated to spondyloarthropathy (B*2704 and B*2706) differ by specific changes at three anchor positions. J Biol Chem 2002; 277:16744–16749.PubMedCrossRefGoogle Scholar
  33. 33.
    Cauli A, Vacca A, Mameli A et al. A Sardinian patient with ankylosing spondylitis and HLA-B*2709 co-occurring with HLA-B*1403. Arthritis Rheum 2007; 56:2807–2809.PubMedCrossRefGoogle Scholar
  34. 34.
    Fiorillo MT, Maragno M, Butler R et al. CD8+ T-cell autoreactivity to an HLA-B27-restricted self-epitope correlates with ankylosing spondylitis. J Clin Invest 2000; 106:47–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Garboczi DN, Hung DT, Wiley DC. HLA-A2-peptide complexes: Refolding and crystallization of molecules expressed in Escherichia coli and complexed with single peptides. Proc Natl Acad Sci USA 1992; 89:3429–3433.PubMedCrossRefGoogle Scholar
  36. 36.
    Hülsmeyer M, Hillig RC, Volz A et al. HLA-B27 subtypes differentially associated with disease exhibit subtle structural alterations. J Biol Chem 2002; 277:47844–47853.PubMedCrossRefGoogle Scholar
  37. 37.
    Hülsmeyer M, Welfle K, Pöhlmann T et al. Thermodynamic and structural equivalence of two HLA-B27 subtypes complexed with a self-peptide. J Mol Biol 2005; 346:1367–1379.PubMedCrossRefGoogle Scholar
  38. 38.
    Fiorillo MT, Rückert C, Hülsmeyer M et al. Allele-dependent similarity between viral and self-peptide presentation by HLA-B27 subtypes. J Biol Chem 2005; 280:2962–2971.PubMedCrossRefGoogle Scholar
  39. 39.
    Hülsmeyer M, Fiorillo MT, Bettosini F et al. Dual, HLA-B27 subtype-dependent conformation of a self-peptide. J Exp Med 2004; 199:271–281.PubMedCrossRefGoogle Scholar
  40. 40.
    Rückert C, Fiorillo MT, Loll B et al. Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype. J Biol Chem 2006; 281:2306–2316.PubMedCrossRefGoogle Scholar
  41. 41.
    Loll B, Zawacka A, Biesiadka J et al. Purification, crystallization and preliminary X-ray diffraction analysis of the human major histocompatibility antigen HLA-B*2703 complexed with a viral peptide and with a self-peptide. Acta Cryst F 2005; 61:372–374.CrossRefGoogle Scholar
  42. 42.
    Loll B, Zawacka A, Biesiadka J et al. Preliminary X-ray diffraction analysis of crystals from the recombinantly expressed human major histocompatibility antigen HLA-B*2704 in complex with a viral peptide and with a self-peptide. Acta Cryst F 2005; 61:939–941.CrossRefGoogle Scholar
  43. 43.
    Zawacka A, Loll B, Biesiadka J et al. X-ray diffraction analysis of crystals from the human major histocompatibility antigen HLA-B*2706 in complex with a viral peptide and with a self-peptide. Acta Cryst F 2005; 61:1097–1099.CrossRefGoogle Scholar
  44. 44.
    Hillig RC, Hülsmeyer M, Saenger W et al. Thermodynamic and structural analysis of peptide-and allele-dependent properties of two HLA-B27 subtypes exhibiting differential disease association. J Biol Chem 2004; 279:652–663.PubMedCrossRefGoogle Scholar
  45. 45.
    Pöhlmann T, Böckmann RA, Grubmüller H et al. Differential peptide dynamics is linked to MHC polymorphism. J Biol Chem 2004; 279:28197–28201.PubMedCrossRefGoogle Scholar
  46. 46.
    Winkler K, Winter A, Rückert C et al. Natural MHC class I polymorphism controls the pathway of peptide dissociation from HLA-B27 complexes. Biophys J 2007; 93:2743–2755.PubMedCrossRefGoogle Scholar
  47. 47.
    Fabian H, Huser H, Narzi D et al. HLA-B27 subtypes differentially associated with disease exhibit conformational differences in solution. J Mol Biol 2008; 376:798–810.PubMedCrossRefGoogle Scholar
  48. 48.
    López de Castro JA, Alvarez I, Marcilla M et al. HLA-B27: A registry of constitutive peptide ligands. Tissue Antigens 2004; 63:424–445.PubMedCrossRefGoogle Scholar
  49. 49.
    Uchanska-Ziegler B, Alexiev U, Hillig R et al. X-ray crystallography and dynamic studies of HLA-B*2705 and B*2709 molecules complexed with the samepeptide. In: Hansen JA, ed. Immunobiology of the Human MHC: Proceedings of the 13th International Histocompatibility Workshop and Congress, Vol. 1. Seattle: IHWG Press, 2006: 138–147.Google Scholar
  50. 50.
    Herberts CA, Neijssen JJ, de Haan J et al. Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: coupling cytosolic peptide stability to antigen presentation. J Immunol 2006; 176:2697–2701.PubMedGoogle Scholar
  51. 51.
    Ziegler A, Loll B, Kellermann T et al. A cartilage-derived self peptide presented by HLA-B27 molecules? Comment on the article by Atagunduz and colleagues. Arthritis Rheum 2005; 52:2581–2582.PubMedCrossRefGoogle Scholar
  52. 52.
    Atagunduz P, Appel H, Kuon W et al. HLA-B27-restricted CD8+ T-cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum 2005; 52:892–901.PubMedCrossRefGoogle Scholar
  53. 53.
    García-Peydro M, Marti M, López de Castro JA. High T-cell epitope sharing between two HLA-B27 subtypes (B*2705 and B*2709) differentially associated to ankylosing spondylitis. J Immunol 1999; 163:2299–2305.PubMedGoogle Scholar
  54. 54.
    Brooks JM, Murray RJ, Thomas WA et al. Different HLA-B27 subtypes present the same immunodominant Esptein-Barr virus peptide. J Exp Med 1993; 178:879–887.PubMedCrossRefGoogle Scholar
  55. 55.
    Earnest T, Fauman E, Craik CS et al. 1.59 A structure of trypsin at 120 K: Comparison of low temperature and room temperature structures. Proteins 1991; 10:171–187.PubMedCrossRefGoogle Scholar
  56. 56.
    Tilton RF, Dewan JC, Petsko GA. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 1992; 31:2469–2481.PubMedCrossRefGoogle Scholar
  57. 57.
    Pace CN, Scholtz JM. Measuring the conformational stability of a protein. In: Creighton TE, ed. Protein Structure, A Practical Approach, 2nd ed. Oxford: Oxford IRL Press, 1997:299–321.Google Scholar
  58. 58.
    Dédier S, Reinelt S, Reitinger T et al. Thermodynamic stability of HLA-B*2705 peptide complexes. Effect of peptide and major histocompatibility complex protein mutations. J Biol Chem 2000; 275:27055–27061.PubMedGoogle Scholar
  59. 59.
    Alexiev U, Rimke I, Pöhlmann T. Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: A time-resolved fluorescence depolarization study. J Mol Biol 2003; 328: 705–719.PubMedCrossRefGoogle Scholar
  60. 60.
    Fabian H, Mäntele W. Infrared spectroscopy of proteins. In: Chalmers JM, Griffiths PR, eds. Handbook of Vibrational Spectroscopy. Chichester: Wiley, 2002; 3399-3425.Google Scholar
  61. 61.
    Barth A, Zscherp C. What vibrations tell us about proteins. Q Rev Biophys 2002; 35:369–430.PubMedCrossRefGoogle Scholar
  62. 62.
    Privalov PL, Potekhin SA. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol 1986; 131:4–51.PubMedCrossRefGoogle Scholar
  63. 63.
    Rudolph MG, Luz JG, Wilson IA. Structural and thermodynamic correlates of T-cell signaling. Annu Rev Biophys Biomol Struct 2002; 31:121–149.PubMedCrossRefGoogle Scholar
  64. 64.
    Tran TM, Dorris ML, Satumtira N et al. Additional human beta2m curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27 transgenic rats. Arthritis Rheum 2006; 54:1317–1327.PubMedCrossRefGoogle Scholar
  65. 65.
    Funkunishi S, Yoh K, Kamae S et al. Beta 2-microglobulin amyloid deposit in HLA-B27 transgenic rats. Mod Rheumatol 2007; 17:380–384.CrossRefGoogle Scholar
  66. 66.
    Uchanska-Ziegler B, Ziegler A. HLA-B27-transgenic rats, amyloid deposits, and spondyloarthropathies. Mod Rheumatol 2008; doi: 10.1007/s 10165-008-0066-8.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Andreas Ziegler
    • 1
  • Bernhard Loll
    • 2
  • Rolf Misselwitz
    • 1
  • Barbara Uchanska-Ziegler
    • 1
  1. 1.Institut für Immungenetik, Charité-Universitätsmedizin BerlinFreie Universität BerlinBerlinGermany
  2. 2.Abteilung für Biomolekulare MechanismenMax-Planck-Institut für Medizinische ForschungHeidelbergGermany

Personalised recommendations