Dynamic Regulation of Antigen Receptor Gene Assembly

  • Lance R. Thomas
  • Robin Milley Cobb
  • Eugene M. OltzEmail author
Part of the Advances in Experimental Medicine and Biology book series (volume 650)


A hallmark feature of adaptive immunity is the production of lymphocytes bearing an enormous repertoire of receptors for foreign antigens. This repertoire is generated early in B and T-cell development by the process of V(D)J recombination, which randomly assembles functional immunoglobulin (Ig) and T-cell receptor (TCR) genes from large arrays of DNA segments. Precursor lymphocytes must target then retarget a single V(D)J recombinase enzyme to distinct regions within antigen receptor loci to guide lymphocyte development and to ensure that each mature B and T-cell expresses only a single antigen receptor specificity. Proper targeting of V(D)J recombinase is also essential to avoid chromosomal aberrations that result in lymphoid malignancies. Early studies suggested that changes in the specificity of V(D)J recombination are achieved by differentially opening or closing chromatin associated with Ig and TCR gene segments at the proper developmental time point. This accessibility model has been extended significantly in recent years and it has become clear that control mechanisms governing antigen receptor gene assembly are multifaceted and vary from locus to locus. In this chapter we review how genetic and epigenetic mechanisms as well as widespread changes in chromosomal conformation synergize to orchestrate the diversification of genes encoding B and T-cell antigen receptors.


Gene Segment Antigen Receptor Chromatin Accessibility Allelic Exclusion Common Lymphoid Progenitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell 2002; 109 Suppl:S45–55.Google Scholar
  2. 2.
    de Villartay JP, Poinsignon C, de Chasseval R et al. Human and animal models of V(D)J recombination deficiency. Curr Opin Immunol 2003; 15(5):592–598.CrossRefPubMedGoogle Scholar
  3. 3.
    Jankovic M, Nussenzweig A, Nussenzweig MC. Antigen receptor diversification and chromosome translocations. Nat Immunol 2007; 8(8):801–808.CrossRefPubMedGoogle Scholar
  4. 4.
    Cobb RM, Oestreich KJ, Osipovich OA et al. Accessibility control of V(D)J recombination. Adv Immunol 2006 91:45–109.CrossRefPubMedGoogle Scholar
  5. 5.
    Oettinger MA, Schatz DG, Gorka C et al. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990; 248(4962):1517–1523.CrossRefPubMedGoogle Scholar
  6. 6.
    Schatz DG, Oettinger MA, Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell 1989; 59(6):1035–1048.CrossRefPubMedGoogle Scholar
  7. 7.
    Sakano H, Huppi K, Heinrich G et al. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 1979; 280(5720):288–294.CrossRefPubMedGoogle Scholar
  8. 8.
    Dudley DD, Chaudhuri J, Bassing CH et al. Mechanism and Control of V(D)J Recombination versus Class Switch Recombination: Siiilarities and Differences. Adv Immunol 2005; 86:43–112.CrossRefPubMedGoogle Scholar
  9. 9.
    Yancopoulos GD, Blackwell TK, Suh H et al. Introduced T-cell receptor variable region gene segments recombine in preB cells: evidence that B-and T-cells use a common recombinase. Cell 1986; 44(2):251–259.CrossRefPubMedGoogle Scholar
  10. 10.
    Krangel MS. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 2003; 4(7):624–630.CrossRefPubMedGoogle Scholar
  11. 11.
    Hardy RR, Carmack CE, Shinton SA et al. Resolution and characterization of pro-B and prepro-B-cell stages in normal mouse bone marrow. J Exp Med 1991; 173(5):1213–1225.CrossRefPubMedGoogle Scholar
  12. 12.
    Melchers F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol 2005; 5(7):578–584.CrossRefPubMedGoogle Scholar
  13. 13.
    Ehlich A, Schaal S, Gu H et al. Immunoglobulin heavy and light chain genes rearrange independently at early stages of B-cell development. Cell 1993; 72(5):695–704.CrossRefPubMedGoogle Scholar
  14. 14.
    Krangel MS. T-cell development: better living through chromatin. Nat Immunol 2007; 8(7):687–694.CrossRefPubMedGoogle Scholar
  15. 15.
    Loffert D, Ehlich A, Muller W et al. Surrogate light chain expression is required to establish immuno-globulin heavy chain allelic exclusion during early B-cell development. Immunity 1996; 4(2):133–144.CrossRefPubMedGoogle Scholar
  16. 16.
    Sen R, Oltz E. Genetic and epigenetic regulation of IgH gene assembly. Curr Opin Immunol 2006; 18(3):237–242.CrossRefPubMedGoogle Scholar
  17. 17.
    Van Ness BG, Weigert M, Coleclough C et al. Transcription of the unrearranged mouse Cκ locus: sequence of the initiation region and comparison of activity with a rearranged Vκ-Cκ gene. Cell 1981; 27(3):593–602.CrossRefPubMedGoogle Scholar
  18. 18.
    Yancopoulos GD, Alt FW. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 1985; 40(2):271–281.CrossRefPubMedGoogle Scholar
  19. 19.
    Sleckman BP, Gorman JR, Alt FW. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu Rev Immunol 1996; 14:459–481.CrossRefPubMedGoogle Scholar
  20. 20.
    Yancopoulos GD, Alt FW. Regulation of the assembly and expression of variable-region genes. Annu Rev Immunol 1986; 4:339–368.CrossRefPubMedGoogle Scholar
  21. 21.
    Stanhope-Baker P, Hudson KM, Shaffer AL et al. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 1996; 85(6):887–897.CrossRefPubMedGoogle Scholar
  22. 22.
    Ferrier P, Krippl B, Blackwell TK et al. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J 1990; 9(1):117–125.PubMedGoogle Scholar
  23. 23.
    Oltz EM, Alt FW, Lin WC et al. A V(D)J recombinase-inducible B-cell line: role of transcriptional enhancer elements in directing V(D)J recombination. Mol Cell Biol 1993; 13(10):6223–6230.PubMedGoogle Scholar
  24. 24.
    Bories JC, Demengeot J, Davidson L et al. Gene-targeted deletion and replacement mutations of the T-cell receptor beta-chain enhancer: the role of enhancer elements in controlling V(D)J recombination accessibility. Proc Natl Acad Sci USA 1996; 93(15):7871–7876.CrossRefPubMedGoogle Scholar
  25. 25.
    Bouvier G, Watrin F, Naspetti M et al. Deletion of the mouse T-cell receptor beta gene enhancer blocks αβ T-cell development. Proc Natl Acad Sci USA 1996; 93(15):7877–7881.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen J, Young F, Bottaro A et al. Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus. EMBO J. 1993; 12(12):4635–4645.PubMedGoogle Scholar
  27. 27.
    Serwe M, Sablitzky F. V(D)J recombination in B-cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer. EMBO J. 1993; 12(6):2321–2327.PubMedGoogle Scholar
  28. 28.
    Oestreich KJ, Cobb RM, Pierce S et al. Regulation of TCRβ gene assembly by a promoter/enhancer holocomplex. Immunity 2006; 24(4):381–391.CrossRefPubMedGoogle Scholar
  29. 29.
    Sikes ML, Meade A, Tripathi R et al. Regulation of V(D)J recombination: A dominant role for promoter positioning in gene segment accessibility. Proc Natl Acad Sci USA 2002; 99:12309–12314.CrossRefPubMedGoogle Scholar
  30. 30.
    Sikes ML, Suarez CC, Oltz EM. Regulation of V(D)J recombination by transcriptional promoters. Mol Cell Biol 1999; 19(4):2773–2781.PubMedGoogle Scholar
  31. 31.
    Whitehurst CE, Chattopadhyay S, Chen J. Control of V(D)J recombinational accessibility of the Dβ1 gene segment at the TCRβ locus by a germline promoter. Immunity 1999; 10(3):313–322.CrossRefPubMedGoogle Scholar
  32. 32.
    Hawwari A, Bock C, Krangel MS. Regulation of T-cell receptor alpha gene assembly by a complex hierarchy of germline Jα promoters. Nat Immunol 2005; 6(5):481–489.CrossRefPubMedGoogle Scholar
  33. 33.
    Abarrategui I, Krangel MS. Regulation of T-cell receptor-alpha gene recombination by transcription. Nat Immunol 2006; 7(10):1109–1115.CrossRefPubMedGoogle Scholar
  34. 34.
    Fahrner JA, Baylin SB. Heterochromatin: stable and unstable invasions at home and abroad. Genes Dev 2003; 17(15):1805–1812.CrossRefPubMedGoogle Scholar
  35. 35.
    Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation. Cell 2004; 116(2):259–272.CrossRefPubMedGoogle Scholar
  36. 36.
    Wolffe AP, Guschin D. Review: chromatin structural features and targets that regulate transcription. J Struct Biol 2000; 129(2–3):102–122.CrossRefPubMedGoogle Scholar
  37. 37.
    Jenuwein T, Allis CD. Translating the histone code. Science. 2001; 293(5532):1074–1080.CrossRefPubMedGoogle Scholar
  38. 38.
    Berger SL. Histone modifications in transcriptional regulation. Curr Opin Genet Dev 2002; 12(2):142–148.CrossRefPubMedGoogle Scholar
  39. 39.
    Lachner M, O’Carroll D, Rea S et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410(6824):116–120.CrossRefPubMedGoogle Scholar
  40. 40.
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1):6–21.CrossRefPubMedGoogle Scholar
  41. 41.
    Fuks F, Hurd PJ, Deplus R et al. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003; 31(9):2305–2312.CrossRefPubMedGoogle Scholar
  42. 42.
    McMurry MT, Krangel MS. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 2000; 287(5452):495–498.CrossRefPubMedGoogle Scholar
  43. 43.
    Morshead KB, Ciccone DN, Taverna SD et al. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc Natl Acad Sci USA 2003; 100(20):11577–11582.CrossRefPubMedGoogle Scholar
  44. 44.
    Spicuglia S, Kumar S, Yeh JH et al. Promoter activation by enhancer-dependent and-independent loading of activator and coactivator complexes. Mol Cell 2002; 10:1479–1487.CrossRefPubMedGoogle Scholar
  45. 45.
    Osipovich O, Milley R, Meade A et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat Immunol 2004; 5(3):309–316.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S. A PHD-Finger Domain in RAG-2 That Binds Hypermethylated Lysine 4 of Histone H3 Is Necessary for Efficient V(D)J Rearrangement. Immunity 2007; 27(4):561–571.CrossRefPubMedGoogle Scholar
  47. 47.
    Matthews AG, Kuo AJ, Ramon-Maiques S et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 2007; 450(7172):1106–1110.CrossRefPubMedGoogle Scholar
  48. 48.
    Shi X, Hong T, Walter KL et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 2006; 442(7098):96–99.PubMedGoogle Scholar
  49. 49.
    Kingston RE, Narlikar GJ. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 1999; 13(18):2339–2352.CrossRefPubMedGoogle Scholar
  50. 50.
    Emerson BM. Specificity of gene regulation. Cell 2002; 109(3):267–270.CrossRefPubMedGoogle Scholar
  51. 51.
    Kwon J, Morshead KB, Guyon JR et al. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol Cell 2000; 6(5):1037–1048.CrossRefPubMedGoogle Scholar
  52. 52.
    Osipovich O, Milley Cobb R, Oestreich KJ et al. Essential function for SWI-SNF chromatin-remodeling complexes in the promoter-directed assembly of Tcrβ genes. Nat Immunol 2007; 8(8):809–816.CrossRefPubMedGoogle Scholar
  53. 53.
    Reddy KL, Zullo JM, Bertolino E, Singh H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 2008; 452(7184):243–247.CrossRefPubMedGoogle Scholar
  54. 54.
    Kosak ST, Skok JA, Medina KL et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 2002; 296(5565):158–162.CrossRefPubMedGoogle Scholar
  55. 55.
    McDougall S, Peterson CL, Calame K. A transcriptional enhancer 3′ of Cβ2 in the T-cell receptor beta locus. Science 1988; 241(4862):205–208.CrossRefPubMedGoogle Scholar
  56. 56.
    McMillan RE, Sikes ML. Differential Activation of Dual Promoters Alters Dβ2 Germline Transcription during Thymocyte Development. J Immunol 2008; 180(5):3218–3228.PubMedGoogle Scholar
  57. 57.
    Afshar R, Pierce S, Bolland DJ et al. Regulation of IgH gene assembly: role of the intronic enhancer and 5′DQ52 region in targeting DHJH recombination. J Immunol 2006; 176(4):2439–2447.PubMedGoogle Scholar
  58. 58.
    Mathieu N, Hempel WM, Spicuglia S et al. Chromatin remodeling by the T-cell receptor (TCR)-beta gene enhancer during early T-cell development: Implications for the control of TCR-beta locus recombination. J Exp Med 2000; 192(5):625–636.CrossRefPubMedGoogle Scholar
  59. 59.
    Perlot T, Alt FW, Bassing CH et al. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA 2005; 102(40):14362–14367.CrossRefPubMedGoogle Scholar
  60. 60.
    Ryu CJ, Haines BB, Lee HR et al. The T-cell receptor beta variable gene promoter is required for efficient Vβ rearrangement but not allelic exclusion. Mol Cell Biol 2004; 24(16):7015–7023.CrossRefPubMedGoogle Scholar
  61. 61.
    Jackson A, Kondilis HD, Khor B et al. Regulation of T-cell receptor beta allelic exclusion at a level beyond accessibility. Nat Immunol 2005; 6(2):189–197.CrossRefPubMedGoogle Scholar
  62. 62.
    Skok JA, Gisler R, Novatchkova M et al. Reversible contraction by looping of the Tcrα and Tcrβ loci in rearranging thymocytes. Nat Immunol 2007; 8(4):378–387.CrossRefPubMedGoogle Scholar
  63. 63.
    Roldan E, Fuxa M, Chong W et al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 2005; 6(1):31–41.CrossRefPubMedGoogle Scholar
  64. 64.
    Jhunjhunwala S, van Zelm MC, Peak MM, et al. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 2008; 133(2):265–279.CrossRefPubMedGoogle Scholar
  65. 65.
    Goldmit M, Ji Y, Skok J et al. Epigenetic ontogeny of the Igκ locus during B-cell development. Nat Immunol 2005; 6(2):198–203.CrossRefPubMedGoogle Scholar
  66. 66.
    Gorman JR, Alt FW. Regulation of immunoglobulin light chain isotype expression. Adv Immunol 1998; 69:113–181.CrossRefPubMedGoogle Scholar
  67. 67.
    Manz J, Denis K, Witte O et al. Feedback inhibition of immunoglobulin gene rearrangement by membrane mu, but not by secreted mu heavy chains. J Exp Med 1988; 168(4):1363–1381.CrossRefPubMedGoogle Scholar
  68. 68.
    Tripathi R, Jackson A, Krangel MS. A change in the structure of Vβ chromatin associated with TCRβ allelic exclusion. J Immunol 2002; 168(5):2316–2324.PubMedGoogle Scholar
  69. 69.
    Chowdhury D, Sen R. Transient IL-7/IL-7R Signaling Provides a Mechanism for Feedback Inhibition of Immunoglobulin Heavy Chain Gene Rearrangements. Immunity 2003; 18:229–241.CrossRefPubMedGoogle Scholar
  70. 70.
    Mostoslavsky R, Singh N, Tenzen T et al. Asynchronous replication and allelic exclusion in the immune system. Nature 2001; 414(6860):221–225.CrossRefPubMedGoogle Scholar
  71. 71.
    Hardy RR, Hayakawa K. B-ell development pathways. Annu Rev Immunol 2001; 19:595–621.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Lance R. Thomas
    • 1
  • Robin Milley Cobb
    • 1
  • Eugene M. Oltz
    • 1
    Email author
  1. 1.Department of Microbiology and ImmunologyVanderbilt UniversityNashvilleUSA

Personalised recommendations