Large-Scale Chromatin Remodeling at the Immunoglobulin Heavy Chain Locus: A Paradigm for Multigene Regulation

  • Daniel J. Bolland
  • Andrew L. Wood
  • Anne E. Corcoran
Part of the Advances in Experimental Medicine and Biology book series (volume 650)


V(D)J recombination in lymphocytes is the cutting and pasting together of antigen receptor genes in cis to generate the enormous variety of coding sequences required to produce diverse antigen receptor proteins. It is the key role of the adaptive immune response, which must potentially combat millions of different foreign antigens. Most antigen receptor loci have evolved to be extremely large and contain multiple individual V, D and J genes. The immunoglobulin heavy chain (Igh) and immunoglobulin kappa light chain (Igk) loci are the largest multigene loci in the mammalian genome and V(D)J recombination is one of the most complicated genetic processes in the nucleus. The challenge for the appropriate lymphocyte is one of macro-management—to make all of the antigen receptor genes in a particular locus available for recombination at the appropriate developmental time-point. Conversely, these large loci must be kept closed in lymphocytes in which they do not normally recombine, to guard against genomic instability generated by the DNA double strand breaks inherent to the V(D)J recombination process. To manage all of these demanding criteria, V(D)J recombination is regulated at numerous levels. It is restricted to lymphocytes since the Rag genes which control the DNA double-strand break step of recombination are only expressed in these cells. Within the lymphocyte lineage, immunoglobulin recombination is restricted to B-lymphocytes and TCR recombination to T-lymphocytes by regulation of locus accessibility, which occurs at multiple levels. Accessibility of recombination signal sequences (RSSs) flanking individual V, D and J genes at the nucleosomal level is the key micro-management mechanism, which is discussed in greater detail in other chapters. This chapter will explore how the antigen receptor loci are regulated as a whole, focussing on the Igh locus as a paradigm for the mechanisms involved. Numerous recent studies have begun to unravel the complex and complementary processes involved in this large-scale locus organisation. We will examine the structure of the Igh locus and the large-scale and higher-order chromatin remodelling processes associated with V(D)J recombination, at the level of the locus itself, its conformational changes and its dynamic localisation within the nucleus.


Antigen Receptor Versus Region Antisense Transcription Recombination Signal Sequence Allelic Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hesslein DG, Schatz DG. Factors and forces controlling V(D)J recombination. Adv Immunol 2001; 78:169–232.CrossRefPubMedGoogle Scholar
  2. 2.
    Corcoran AE. Immunoglobulin locus silencing and allelic exclusion. Semin Immunol 2005; 17(2):141–154.CrossRefPubMedGoogle Scholar
  3. 3.
    Johnston CM, Wood AL, Bolland DJ et al. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J Immunol 2006; 176(7):4221–4234.PubMedGoogle Scholar
  4. 4.
    Brekke KM, Garrard WT. Assembly and analysis of the mouse immunoglobulin kappa gene sequence. Immunogenetics 2004; 56(7):490–505.CrossRefPubMedGoogle Scholar
  5. 5.
    Ye J. The immunoglobulin IGHD gene locus in C57BL/6 mice. Immunogenetics 2004; 56(6):399–404.CrossRefPubMedGoogle Scholar
  6. 6.
    Atkinson MJ, Michnick DA, Paige CJ et al. Ig gene rearrangements on individual alleles of Abelson murine leukemia cell lines from (C57BL/6×BALB/c) F1 fetal livers. J Immunol 1991; 146(8):2805–2812.PubMedGoogle Scholar
  7. 7.
    Jeong HD, Komisar JL, Kraig E et al. Strain-dependent expression of VH gene families. J Immunol 1988; 140(7):2436–2441.PubMedGoogle Scholar
  8. 8.
    Malynn BA, Yancopoulos GD, Barth JE et al. Biased expression of JH-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J Exp Med 1990; 171(3):843–859.CrossRefPubMedGoogle Scholar
  9. 9.
    Matsuda F, Ishii K, Bourvagnet P et al. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med 1998; 188(11):2151–2162.CrossRefPubMedGoogle Scholar
  10. 10.
    Hiom K, Melek M, Gellert M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 1998; 94(4):463–470.CrossRefPubMedGoogle Scholar
  11. 11.
    Jones JM, Gellert M. The taming of a transposon: V(D)J recombination and the immune system. Immunol Rev 2004; 200:233–248.CrossRefPubMedGoogle Scholar
  12. 12.
    Retter I, Chevillard C, Scharfe M et al. Sequence and Characterization of the Ig Heavy Chain Constant and Partial Variable Region of the Mouse Strain 129S1. J Immunol 2007; 179(4):2419–2427.PubMedGoogle Scholar
  13. 13.
    McBlane F, Boyes J. Stimulation of V(D)J recombination by histone acetylation. Curr Biol 2000; 10(8):483–486.CrossRefPubMedGoogle Scholar
  14. 14.
    Mattick JS. The functional genomics of noncoding RNA. Science 2005; 309(5740):1527–1528.CrossRefPubMedGoogle Scholar
  15. 15.
    Lennon GG, Perry RP. C mu-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature 1985; 318(6045):475–478.CrossRefPubMedGoogle Scholar
  16. 16.
    Thompson A, Timmers E, Schuurman RK et al. Immunoglobulin heavy chain germ-line JH-C mu transcription in human precursor B-lymphocytes initiates in a unique region upstream of DQ52. Eur J Immunol 1995; 25(1):257–261.CrossRefPubMedGoogle Scholar
  17. 17.
    Reth MG, Alt FW. Novel immunoglobulin heavy chains are produced from DJH gene segment rearrangements in lymphoid cells. Nature 1984; 312(5993):418–423.CrossRefPubMedGoogle Scholar
  18. 18.
    Yancopoulos GD, Alt FW. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 1985; 40(2):271–281.CrossRefPubMedGoogle Scholar
  19. 19.
    Corcoran AE, Riddell A, Krooshoop D et al. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 1998; 391(6670):904–907.CrossRefPubMedGoogle Scholar
  20. 20.
    Krangel MS. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 2003; 4(7):624–630.CrossRefPubMedGoogle Scholar
  21. 21.
    Stanhope-Baker P, Hudson KM, Shaffer AL et al. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 1996; 85(6):887–897.CrossRefPubMedGoogle Scholar
  22. 22.
    Bolland DJ, Wood AL, Johnston CM et al. Antisense intergenic transcription in V(D)J recombination. Nat Immunol 2004; 5(6):630–637.CrossRefPubMedGoogle Scholar
  23. 23.
    Osborne CS, Chakalova L, Mitchell JA et al. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 2007; 5(8):e192.CrossRefPubMedGoogle Scholar
  24. 24.
    Fraser P. Transcriptional control thrown for a loop. Curr Opin Genet Dev 2006; 16(5):490–495.CrossRefPubMedGoogle Scholar
  25. 25.
    Johnson K, Pflugh DL, Yu D et al. B-cell-specific loss of histone 3 lysine 9 methylation in the V(H) locus depends on Pax5. Nat Immunol 2004; 5(8):853–861.CrossRefPubMedGoogle Scholar
  26. 26.
    Gribnau J, Diderich K, Pruzina S et al. Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 2000; 5(2):377–386.CrossRefPubMedGoogle Scholar
  27. 27.
    Drewell RA, Bae E, Burr J et al. Transcription defines the embryonic domains of cis-regulatory activity at the Drosophila bithorax complex. Proc Natl Acad Sci USA 2002; 99(26):16853–16858.CrossRefPubMedGoogle Scholar
  28. 28.
    Masternak K, Peyraud N, Krawczyk M et al. Chromatin remodeling and extragenic transcription at the MHC class II locus control region. Nat Immunol 2003; 4(2):132–137.CrossRefPubMedGoogle Scholar
  29. 29.
    Bernstein BE, Kamal M, Lindblad-Toh K et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005; 120(2):169–181.CrossRefPubMedGoogle Scholar
  30. 30.
    Wilson CJ, Chao DM, Imbalzano AN et al. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 1996; 84(2):235–244.CrossRefPubMedGoogle Scholar
  31. 31.
    Cho H, Orphanides G, Sun X et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol 1998; 18(9):5355–5363.PubMedGoogle Scholar
  32. 32.
    Wittschieben BO, Otero G, de Bizemont T et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 1999; 4(1):123–128.CrossRefPubMedGoogle Scholar
  33. 33.
    Krogan NJ, Kim M, Tong A et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 2003; 23(12):4207–4218.CrossRefPubMedGoogle Scholar
  34. 34.
    Ng HH, Robert F, Young RA et al. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 2003; 11(3):709–719.CrossRefPubMedGoogle Scholar
  35. 35.
    Schwartz BE, Ahmad K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 2005; 19(7):804–814.CrossRefPubMedGoogle Scholar
  36. 36.
    Mito Y, Henikoff JG, Henikoff S. Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 2005.Google Scholar
  37. 37.
    Orphanides G, Reinberg D. RNA polymerase II elongation through chromatin. Nature 2000; 407(6803):471–475.CrossRefPubMedGoogle Scholar
  38. 38.
    Chakalova L, Debrand E, Mitchell JA et al. Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 2005; 6(9):669–677.CrossRefPubMedGoogle Scholar
  39. 39.
    Mahy NL, Perry PE, Bickmore WA. Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 2002; 159(5):753–763.CrossRefPubMedGoogle Scholar
  40. 40.
    Muller WG, Walker D, Hager GL et al. Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter. J Cell Biol 2001; 154(1):33–48.CrossRefPubMedGoogle Scholar
  41. 41.
    Volpi EV, Chevret E, Jones T et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 2000;113 (Pt 9):1565–1576.PubMedGoogle Scholar
  42. 42.
    Chambeyron S, Da Silva NR, Lawson KA et al. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 2005; 132(9):2215–2223.CrossRefPubMedGoogle Scholar
  43. 43.
    Schmitt S, Prestel M, Paro R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev 2005; 19(6):697–708.CrossRefPubMedGoogle Scholar
  44. 44.
    Ho Y, Elefant F, Liebhaber SA et al. Locus control region transcription plays an active role in long-range gene activation. Mol Cell 2006; 23(3):365–375.CrossRefPubMedGoogle Scholar
  45. 45.
    Sleutels F, Zwart R, Barlow DP. The noncoding Air RNA is required for silencing autosomal imprinted genes. Nature 2002; 415(6873):810–813.PubMedGoogle Scholar
  46. 46.
    Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet 2007; 8(1):35–46.CrossRefPubMedGoogle Scholar
  47. 47.
    Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007; 8(4):272–285.CrossRefPubMedGoogle Scholar
  48. 48.
    Katayama S, Tomaru Y, Kasukawa T et al. Antisense transcription in the mammalian transcriptome. Science 2005; 309(5740):1564–1566.CrossRefPubMedGoogle Scholar
  49. 49.
    Rinn JL, Kertesz M, Wang JK et al. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs. Cell 2007; 129(7):1311–1323.CrossRefPubMedGoogle Scholar
  50. 50.
    Uhler JP, Hertel C, Svejstrup JQ. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci USA 2007; 104(19):8011–8016.CrossRefPubMedGoogle Scholar
  51. 51.
    Sessa L, Breiling A, Lavorgna G et al. Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA 2007; 13(2):223–239.CrossRefPubMedGoogle Scholar
  52. 52.
    Chowdhury D, Sen R. Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J 2001; 20(22):6394–6403.CrossRefPubMedGoogle Scholar
  53. 53.
    Maes J, O’Neill LP, Cavelier P et al. Chromatin remodeling at the Ig loci prior to V(D)J recombination. J Immunol 2001; 167(2):866–874.PubMedGoogle Scholar
  54. 54.
    Johnson K, Angelin-Duclos C, Park S et al. Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol Cell Biol 2003; 23(7):2438–2450.CrossRefPubMedGoogle Scholar
  55. 55.
    Su IH, Basavaraj A, Krutchinsky AN et al. Ezh2 controls B-cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 2003; 4(2):124–131.CrossRefPubMedGoogle Scholar
  56. 56.
    Bolland DJ, Wood AL, Afshar R et al. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer. Emu. Mol Cell Biol 2007; 27(15):5523–5533.CrossRefGoogle Scholar
  57. 57.
    Sakai E, Bottaro A, Davidson L et al. Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions. Proc Natl Acad Sci USA 1999; 96(4):1526–1531.CrossRefPubMedGoogle Scholar
  58. 58.
    Serwe M, Sablitzky F. V(D)J recombination in B-cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer. EMBO J 1993; 12(6):2321–2327.PubMedGoogle Scholar
  59. 59.
    Perlot T, Alt FW, Bassing CH et al. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA 2005; 102(40):14362–14367.CrossRefPubMedGoogle Scholar
  60. 60.
    Afshar R, Pierce S, Bolland DJ et al. Regulation of IgH Gene Assembly: Role of the Intronic Enhancer and 5’DQ52 Region in Targeting DHJH Recombination. J Immunol 2006; 176(4):2439–2447.PubMedGoogle Scholar
  61. 61.
    Morshead KB, Ciccone DN, Taverna SD et al. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc Natl Acad Sci USA 2003; 100(20):11577–11582.CrossRefPubMedGoogle Scholar
  62. 62.
    Maes J, Chappaz S, Cavelier P et al. Activation of V(D)J Recombination at the IgH Chain JH Locus Occurs within a 6-Kilobase Chromatin Domain and Is Associated with Nucleosomal Remodeling. J Immunol 2006; 176(9):5409–5417.PubMedGoogle Scholar
  63. 63.
    Bangs LA, Sanz IE, Teale JM. Comparison of D, JH and junctional diversity in the fetal, adult and aged B-cell repertoires. J Immunol 1991; 146(6):1996–2004.PubMedGoogle Scholar
  64. 64.
    Chakraborty T, Chowdhury D, Keyes A et al. Repeat organization and epigenetic regulation of the DH-Cmu domain of the immunoglobulin heavy-chain gene locus. Mol Cell 2007; 27(5):842–850.CrossRefPubMedGoogle Scholar
  65. 65.
    Abarrategui I, Krangel MS. Regulation of T-cell receptor-alpha gene recombination by transcription. Nat Immunol 2006; 7(10):1109–1115.CrossRefPubMedGoogle Scholar
  66. 66.
    Chowdhury D, Sen R. Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J 2001; 20(22):6394–6403.CrossRefPubMedGoogle Scholar
  67. 67.
    Hesslein DG, Pflugh DL, Chowdhury D et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev 2003; 17(1):37–42.CrossRefPubMedGoogle Scholar
  68. 68.
    Maes J, Chappaz S, Cavelier P et al. Activation of V(D)J recombination at the IgH chain JH locus occurs within a 6-kilobase chromatin domain and is associated with nucleosomal remodeling. J Immunol 2006; 176(9):5409–5417.PubMedGoogle Scholar
  69. 69.
    Kosak ST, Skok JA, Medina KL et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 2002; 296(5565):158–162.CrossRefPubMedGoogle Scholar
  70. 70.
    Yang Q, Riblet R, Schildkraut CL. Sites that direct nuclear compartmentalization are near the 5′ end of the mouse immunoglobulin heavy-chain locus. Mol Cell Biol 2005; 25(14):6021–6030.CrossRefPubMedGoogle Scholar
  71. 71.
    Fuxa M, Skok J, Souabni A et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev 2004; 18(4):411–422.CrossRefPubMedGoogle Scholar
  72. 72.
    Roldan E, Fuxa M, Chong W et al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 2005; 6(1):31–41.CrossRefPubMedGoogle Scholar
  73. 73.
    Sayegh C, Jhunjhunwala S, Riblet R et al. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B-cells. Genes Dev 2005; 19(3):322–327.CrossRefPubMedGoogle Scholar
  74. 74.
    Cobaleda C, Schebesta A, Delogu A et al. Pax5: the guardian of B-cell identity and function. Nat Immunol 2007; 8(5):463–470.CrossRefPubMedGoogle Scholar
  75. 75.
    Liu H, Schmidt-Supprian M, Shi Y et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev 2007; 21(10):1179–1189.CrossRefPubMedGoogle Scholar
  76. 76.
    Iborra FJ, Pombo A, Jackson DA et al. Active RNA polymerases are localized within discrete transcription ‘factories’ in human nuclei. J Cell Sci 1996; 109 (Pt 6):1427–1436.PubMedGoogle Scholar
  77. 77.
    Faro-Trindade I, Cook PR. Transcription factories: structures conserved during differentiation and evolution. Biochem Soc Trans 2006; 34(Pt 6):1133–1137.PubMedGoogle Scholar
  78. 78.
    Osborne CS, Chakalova L, Brown KE et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 2004; 36(10):1065–1071.CrossRefPubMedGoogle Scholar
  79. 79.
    Trimborn T, Gribnau J, Grosveld F et al. Mechanisms of developmental control of transcription in the murine alpha-and beta-globin loci. Genes Dev 1999; 13(1):112–124.CrossRefPubMedGoogle Scholar
  80. 80.
    Ragoczy T, Bender MA, Telling A et al. The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 2006; 20(11):1447–1457.CrossRefPubMedGoogle Scholar
  81. 81.
    Chowdhury D, Sen R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 2003; 18(2):229–241.CrossRefPubMedGoogle Scholar
  82. 82.
    Skok JA, Brown KE, Azuara V et al. Nonequivalent nuclear location of immunoglobulin alleles in B-lymphocytes. Nat Immunol 2001; 2(9):848–854.CrossRefPubMedGoogle Scholar
  83. 83.
    Daly J, Licence S, Nanou A et al. Transcription of productive and nonproductive VDJ-recombined alleles after IgH allelic exclusion. EMBO J 2007; 26(19):4273–4282.CrossRefPubMedGoogle Scholar
  84. 84.
    Haines BB, Brodeur PH. Accessibility changes across the mouse Igh-V locus during B-cell development. Eur J Immunol 1998; 28(12):4228–4235.CrossRefPubMedGoogle Scholar
  85. 85.
    Skok JA, Gisler R, Novatchkova M et al. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat Immunol 2007; 8(4):378–387.CrossRefPubMedGoogle Scholar
  86. 86.
    Mostoslavsky R, Singh N, Kirillov A et al. Kappa chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev 1998; 12(12):1801–1811.CrossRefPubMedGoogle Scholar
  87. 87.
    Goldmit M, Ji Y, Skok J et al. Epigenetic ontogeny of the Igk locus during B-cell development. Nat Immunol 2005; 6(2):198–203.CrossRefPubMedGoogle Scholar
  88. 88.
    Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4):693–705.CrossRefPubMedGoogle Scholar
  89. 89.
    Pawlitzky I, Angeles CV, Siegel AM et al. Identification of a candidate regulatory element within the 5′ flanking region of the mouse Igh locus defined by pro-B-cell-specific hypersensitivity associated with binding of PU.1, Pax5 and E2A. J Immunol 2006; 176(11):6839–6851.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Daniel J. Bolland
    • 1
  • Andrew L. Wood
    • 1
  • Anne E. Corcoran
    • 1
  1. 1.Laboratory of Chromatin and Gene ExpressionBabraham InstituteCambridgeUK

Personalised recommendations