Advertisement

Regulation of RAG Transposition

  • Adam G. W. MatthewsEmail author
  • Marjorie A. Oettinger
Part of the Advances in Experimental Medicine and Biology book series (volume 650)

Abstract

V(D)J recombination is initiated by the lymphoid specific proteins RAG1 and RAG2, which together constitute the V(D)J recombinase. However, the RAG1/2 complex can also act as a transposase, inserting the broken DNA molecules generated during V(D)J recombination into an unrelated piece of DNA. This process, termed RAG transposition, can potentially cause insertional mutagenesis, chromosomal translocations and genomic instability. This review focuses on the mechanism and regulation of RAG transposition. We first provide a brief overview of the biochemistry of V(D)J recombination. We then discuss the discovery of RAG transposition and present an overview of the RAG transposition pathway. Using this pathway as a framework, we discuss the factors and forces that regulate RAG transposition.

Keywords

Transposition Event Recombination Signal Sequence Plant Homeodomain Finger Transposition Intermediate Target Site Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell 2002; 109 Suppl:S45–55.Google Scholar
  2. 2.
    Gellert M. V(D)J recombination: RAG proteins, repair factors and regulation. Annu Rev Biochem 2002; 71:101–132.CrossRefPubMedGoogle Scholar
  3. 3.
    Messier TL, O’Neill JP, Hou SM et al. In vivo transposition mediated by V(D)J recombinase in human T-lymphocytes. EMBO J 2003; 22(6):1381–1388.CrossRefPubMedGoogle Scholar
  4. 4.
    Reddy YV, Perkins EJ, Ramsden DA. Genomic instability due to V(D)J recombination-associated transposition. Genes Dev 2006; 20(12):1575–1582.CrossRefPubMedGoogle Scholar
  5. 5.
    Hiom K, Melek M, Gellert M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 1998; 94(4):463–470.CrossRefPubMedGoogle Scholar
  6. 6.
    Tonegawa S. Somatic generation of antibody diversity. Nature 1983; 302(5909):575–581.CrossRefPubMedGoogle Scholar
  7. 7.
    Akamatsu Y, Tsurushita N, Nagawa F et al. Essential residues in V(D)J recombination signals. J Immunol 1994; 153(1)):4520–4529.PubMedGoogle Scholar
  8. 8.
    Akira S, Okazaki K, Sakano H. Two pairs of recombination signals are sufficient to cause immunoglobulin V-(D)-J joining. Science 1987; 238(4830):1134–1138.CrossRefPubMedGoogle Scholar
  9. 9.
    Hesse JE, Lieber MR, Mizuuchi K et al. V(D)J recombination: a functional definition of the joining signals. Genes Dev 1989; 3(7):1053–1061.CrossRefPubMedGoogle Scholar
  10. 10.
    Montalbano A, Ogwaro KM, Tang A et al. V(D)J recombination frequencies can be profoundly affected by changes in the spacer sequence. J Immunol 2003;171(10):5296–5304.PubMedGoogle Scholar
  11. 11.
    Oettinger MA, Schatz DG, Gorka C et al. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990; 248(4962):1517–1523.CrossRefPubMedGoogle Scholar
  12. 12.
    Schatz DG, Oettinger MA, Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell 1989; 59(6):1035–1048.CrossRefPubMedGoogle Scholar
  13. 13.
    Mombaerts P, Iacomini J, Johnson RS et al. RAG-1-deficient mice have no mature B-and T-lymphocytes. Cell 1992; 68(5):869–877.CrossRefPubMedGoogle Scholar
  14. 14.
    Oettinger MA. Activation of V(D)J recombination by RAG1 and RAG2. Trends Genet 1992; 8(12):413–416.CrossRefPubMedGoogle Scholar
  15. 15.
    Shinkai Y, Rathbun G, Lam KP et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992; 68(5):855–867.CrossRefPubMedGoogle Scholar
  16. 16.
    McBlane JF, van Gent DC, Ramsden DA et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 1995; 83(3):387–395.CrossRefPubMedGoogle Scholar
  17. 17.
    Sadofsky MJ, Hesse JE, McBlane JF et al. Expression and V(D)J recombination activity of mutated RAG-1 proteins. Nucleic Acids Res 1993; 21(24):5644–5650.CrossRefPubMedGoogle Scholar
  18. 18.
    Kirch SA, Sudarsanam P, Oettinger MA. Regions of RAG1 protein critical for V(D)J recombination. Eur J Immunol 1996; 26(4):886–891.CrossRefPubMedGoogle Scholar
  19. 19.
    Silver DP, Spanopoulou E, Mulligan RC et al. Dispensable sequence motifs in the RAG-1 and RAG-2 genes for plasmid V(D)J recombination. Proc Natl Acad Sci USA 1993; 90(13):6100–6104.CrossRefPubMedGoogle Scholar
  20. 20.
    Cuomo CA, Oettinger MA. Analysis of regions of RAG-2 important for V(D)J recombination., Nucleic Acids Res 1994; 22(10):1810–1814.CrossRefPubMedGoogle Scholar
  21. 21.
    Sadofsky MJ, Hesse JE, Gellert M. Definition of a core region of RAG-2 that is functional in V(D)J recombination. Nucleic Acids Res 1994; 22(10):1805–1809.CrossRefPubMedGoogle Scholar
  22. 22.
    Litman GW, Anderson MK, Rast JP. Evolution of antigen binding receptors. Annu Rev Immunol 1999; 17:109–147.CrossRefPubMedGoogle Scholar
  23. 23.
    Peixoto BR, Mikawa Y, Brenner S. Characterization of the recombinase activating gene-1 and 2 locus in the Japanese pufferfish, Fugu rubripes. Gene 2000; 246(1–2):275–283.CrossRefPubMedGoogle Scholar
  24. 24.
    Akamatsu Y, Monroe R, Dudley DD et al. Deletion of the RAG2 C terminus leads to impaired lymphoid development in mice. Proc Natl Acad Sci USA 2003; 100(3):1209–1214.CrossRefPubMedGoogle Scholar
  25. 25.
    Dudley DD, Sekiguchi J, Zhu C et al. Impaired V(D)J recombination and lymphocyte development in core RAG1-expressing mice. J Exp Med 2003; 198(9):1439–1450.CrossRefPubMedGoogle Scholar
  26. 26.
    Elkin SK, Ivanov D, Ewalt M et al. A PHD finger motif in the C terminus of RAG2 modulates recombination activity. J Biol Chem 2005; 280(31):28701–28710.CrossRefPubMedGoogle Scholar
  27. 27.
    Kirch SA, Rathbun GA, Oettinger MA. Dual role of RAG2 in V(D)J recombination: catalysis and regulation of ordered Ig gene assembly. EMBO J 1998; 17(16):4881–4886.CrossRefPubMedGoogle Scholar
  28. 28.
    Liang HE, Hsu LY, Cado D et al. The “dispensable” portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B-and T-cell development. Immunity 2002; 17(5):639–651.CrossRefPubMedGoogle Scholar
  29. 29.
    Matthews AG, Kuo AJ, Ramon-Maiques S et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 2007; 450(7172):1106–1110.CrossRefPubMedGoogle Scholar
  30. 30.
    Gu Y, Seidl KJ, Rathbun GA et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 1997; 7(5):653–665.CrossRefPubMedGoogle Scholar
  31. 31.
    Ouyang H, Nussenzweig A, Kurimasa A et al. Ku70 is required for DNA repair but not for T-cell antigen receptor gene recombination In vivo. J Exp Med 15 1997; 186(6):921–929.CrossRefGoogle Scholar
  32. 32.
    Nussenzweig A, Chen C, da Costa Soares V et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 1996; 382(6591):551–555.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhu C, Bogue MA, Lim DS et al. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 1996; 86(3):379–389.CrossRefPubMedGoogle Scholar
  34. 34.
    Gao Y, Chaudhuri J, Zhu C et al. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 1998; 9(3):367–376.CrossRefPubMedGoogle Scholar
  35. 35.
    Taccioli GE, Amatucci AG, Beamish HJ et al. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 1998; 9(3):355–366.CrossRefPubMedGoogle Scholar
  36. 36.
    Moshous D, Callebaut I, de Chasseval R et al. Artemis, a novel DNA double-strand break repair/V(D) J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001; 105(2):177–186.CrossRefPubMedGoogle Scholar
  37. 37.
    Rooney S, Sekiguchi J, Zhu C et al. Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 2002; 10(6):1379–1390.CrossRefPubMedGoogle Scholar
  38. 38.
    Gao Y, Sun Y, Frank KM et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 1998; 95(7):891–902.CrossRefPubMedGoogle Scholar
  39. 39.
    Frank KM, Sekiguchi JM, Seidl KJ et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 1998; 396(6707):173–177.CrossRefPubMedGoogle Scholar
  40. 40.
    Grawunder U, Zimmer D, Fugmann S et al. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol Cell 1998; 2(4):477–484.CrossRefPubMedGoogle Scholar
  41. 41.
    Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 2006; 124(2):301–313.CrossRefPubMedGoogle Scholar
  42. 42.
    Buck D, Malivert L, de Chasseval R et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 2006; 124(2):287–299.CrossRefPubMedGoogle Scholar
  43. 43.
    Zha S, Alt FW, Cheng HL et al. Defective DNA repair and increased genomic instability in Cernunnos-XLF-deficient murine ES cells. Proc Natl Acad Sci USA 2007; 104(11):4518–4523.CrossRefPubMedGoogle Scholar
  44. 44.
    Dai Y, Kysela B, Hanakahi LA et al. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci USA 2003; 100(5):2462–2467.CrossRefPubMedGoogle Scholar
  45. 45.
    Huye LE, Purugganan MM, Jiang MM et al. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest and joining-deficient mutants in the V(D)J recombinase. Mol Cell Biol 2002; 22(10):3460–3473.CrossRefPubMedGoogle Scholar
  46. 46.
    Lee GS, Neiditch MB, Salus SS et al. RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initittes homologous recombination. Cell 2004; 117(2):171–184.CrossRefPubMedGoogle Scholar
  47. 47.
    Leu TM, Eastman QM, Schatz DG. Coding joint formation in a cell-free V(D)J recombination system. Immunity 1997; 7(2):303–314.CrossRefPubMedGoogle Scholar
  48. 48.
    Qiu JX, Kale SB, Yarnell Schultz H et al. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol Cell 2001; 7(1):77–87.CrossRefPubMedGoogle Scholar
  49. 49.
    Ramsden DA, Paull TT, Gellert M. Cell-free V(D)J recombination. Nature 1997; 388(6641):488–491.CrossRefPubMedGoogle Scholar
  50. 50.
    Tsai CL, Chatterji M, Schatz DG. DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Res 2003; 31(21):6180–6190.CrossRefPubMedGoogle Scholar
  51. 51.
    Yarnell Schultz H, Landree MA, Qiu JX et al. Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro. Mol Cell 2001; 7(1):65–75.CrossRefPubMedGoogle Scholar
  52. 52.
    Bredemeyer AL, Sharma GG, Huang CY et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 2006; 442(7101):466–470.CrossRefPubMedGoogle Scholar
  53. 53.
    Clatworthy AE, Valencia-Burton MA, Haber JE et al. The MRE 11-RAD50-XRS2 complex, in addition to other nonhomologous end-joining factors, is required for V(D)J joining in yeast. J Biol Chem 2005; 280(21):20247–20252.CrossRefPubMedGoogle Scholar
  54. 54.
    Jones JM, Gellert M, Ordered assembly of the V(D)J synaptic complex ensures accurate recombination. EMBO J 2002; 21(15):4162–4171.CrossRefPubMedGoogle Scholar
  55. 55.
    Mundy CL, Patenge N, Matthews AG et al. Assembly of the RAG1/RAG2 synaptic complex. Mol Cell Biol 2002; 22(1):69–77.CrossRefPubMedGoogle Scholar
  56. 56.
    Curry JD, Geier JK, Schlissel MS. Single-strand recombination signal, sequence nicks in vivo: evidence for a capture model of synapsis. Nat Immunol 2005; 6(12):1272–1279.CrossRefPubMedGoogle Scholar
  57. 57.
    Hiom K, Gellert M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol Cell 1998; 1(7):1011–1019.CrossRefPubMedGoogle Scholar
  58. 58.
    van Gent DC, Mizuuchi K, Gellert M. Similarities between initiation of V(D)J recombination and retroviral integration. Science 1996; 271(5255):1592–1594.CrossRefPubMedGoogle Scholar
  59. 59.
    Ma Y, Pannicke U, Schwarz K et al. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002; 108(6):781–794.CrossRefPubMedGoogle Scholar
  60. 60.
    Goodarzi AA, Yu Y, Riballo E et al. DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J 2006; 25(16):3880–3889.CrossRefPubMedGoogle Scholar
  61. 61.
    Grawunder U, Wilm M, Wu X et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 1997; 388(6641):492–495.CrossRefPubMedGoogle Scholar
  62. 62.
    Grawunder U, Zimmer D, Kulesza P et al. Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J Biol Chem 1998; 273(38):24708–24714.CrossRefPubMedGoogle Scholar
  63. 63.
    Lu H, Pannicke U, Schwarz K et al. Length-dependent binding of human XLF to DNA and stimulation of XRCC4.DNA ligase IV activity. J Biol Chem 2007; 282(15):11155–11162.CrossRefPubMedGoogle Scholar
  64. 64.
    Sakano H, Huppi K, Heinrich G et al. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 1979; 280(5720):288–294.CrossRefPubMedGoogle Scholar
  65. 65.
    Thompson CB. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 1995; 3(5):531–539.CrossRefPubMedGoogle Scholar
  66. 66.
    Agrawal A, Eastman QM, Schatz DG. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 1998; 394(6695):744–751.CrossRefPubMedGoogle Scholar
  67. 67.
    Chatterji M, Tsai CL, Schatz DG. Mobilization of RAG-generated signal ends by transposition and insertion in vivo. Mol Cell Biol 2006; 26(4):1558–1568.CrossRefPubMedGoogle Scholar
  68. 68.
    Clatworthy AE, Valencia MA, Haber JE et al. V(D)J recombination and RAG-mediated transposition in yeast. Mol Cell 2003; 12(2):489–499.CrossRefPubMedGoogle Scholar
  69. 69.
    Matthews AG, Elkin SK, Oettinger MA. Ordered DNA release and target capture in RAG transposition. EMBO J 2004; 23(5):1198–1206.CrossRefPubMedGoogle Scholar
  70. 70.
    Melek M, Gellert M. RAG1/2-mediated resolution of transposition intermediates: two pathways and possible consequences. Cell 2000; 101(6):625–633.CrossRefPubMedGoogle Scholar
  71. 71.
    Elkin SK, Matthews AG, Oettinger MA. The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J 2003; 22(8):1931–1938.CrossRefPubMedGoogle Scholar
  72. 72.
    Swanson PC, Volkmer D, Wang L. Full-length RAG-2 and not full-length RAG-1, specifically suppresses RAG-mediated transposition but not hybrid joint formation or disintegration. J Biol Chem 2004; 279(6):4034–4044.CrossRefPubMedGoogle Scholar
  73. 73.
    Tsai CL, Schatz DG. Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO J 2003; 22(8):1922–1930.CrossRefPubMedGoogle Scholar
  74. 74.
    Jiang H, Ross AE, Desiderio S. Cell cycle-dependent accumulation in vivo of transposition-competent complexes between recombination signal ends and full-length RAG proteins. J Biol Chem 2004; 279(9):8478–8486.CrossRefPubMedGoogle Scholar
  75. 75.
    Ramsden DA, Gellert M. Formation and resolution of double-strand break intermediates in V(D)J rearrangement. Genes Dev 1995; 9(19):2409–2420.CrossRefPubMedGoogle Scholar
  76. 76.
    Peters JE, Craig NL. Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes Dev 2001; 15(6):737–747.CrossRefPubMedGoogle Scholar
  77. 77.
    Stellwagen AE, Craig NL. Mobile DNA elements: controlling transposition with ATP-dependent molecular switches. Trends Biochem Sci 1998; 23(12):486–490.CrossRefPubMedGoogle Scholar
  78. 78.
    Yamauchi M, Baker TA. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway. EMBO J 1998; 17(18):5509–5518.CrossRefPubMedGoogle Scholar
  79. 79.
    Kaufman PD, Rio DC, P element transposition in vitro proceeds by a cut-and-paste mechanism and uses GTP as a cofactor. Cell 1992; 69(1):27–39.CrossRefPubMedGoogle Scholar
  80. 80.
    Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 1994; 140(1):1–22.CrossRefPubMedGoogle Scholar
  81. 81.
    Lee GS, Neiditch MB, Sinden RR et al. Targeted transposition by the V(D)J recombinase. Mol Cell Biol 2002; 22(7):2068–2077.CrossRefPubMedGoogle Scholar
  82. 82.
    Posey JE, Pytlos MJ, Sinden RR et al. Target DNA structure plays a critical role in RAG transposition. PLoS Biol 2006; 4(11):e350.CrossRefPubMedGoogle Scholar
  83. 83.
    Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2(4):292–301.CrossRefPubMedGoogle Scholar
  84. 84.
    Parada L, Misteli T. Chromosome positioning in the interphase nucleus. Trends Cell Biol 2002; 12(9):425–432.CrossRefPubMedGoogle Scholar
  85. 85.
    Gao Y, Ferguson DO, Xie W et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 2000; 404(6780):897–900.CrossRefPubMedGoogle Scholar
  86. 86.
    Rooney S, Sekiguchi J, Whitlow S et al. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B-cells. Proc Natl Acad Sci USA 2004; 101(8):2410–2415.CrossRefPubMedGoogle Scholar
  87. 87.
    Feldmann H, Winnacker EL. A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem 1993; 268(17):12895–12900.PubMedGoogle Scholar
  88. 88.
    Boulton SJ, Jackson SP. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 1996; 24(23):4639–4648.CrossRefPubMedGoogle Scholar
  89. 89.
    Milne GT, Jin S, Shannon KB et al. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16(8):4189–4198.PubMedGoogle Scholar
  90. 90.
    Herrmann G, Lindahl T, Schar P. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J 1998; 17(14):4188–4198.CrossRefPubMedGoogle Scholar
  91. 91.
    Callebaut I, Malivert L, Fischer A et al. Cernunnos interacts with the XRCC4·DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1. J Biol Chem 2006; 281(20):13857–13860.CrossRefPubMedGoogle Scholar
  92. 92.
    Hentges P, Ahnesorg P, Pitcher PS et al. Evolutionary and functional conservation of the DNA nonhomologous end-joining protein, XLF/Cernunnos. J Biol Chem 2006; 281(49):37517–37526.CrossRefPubMedGoogle Scholar
  93. 93.
    Schar P, Herrmann G, Daly G et al. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev 1997; 11(15):1912–1924.CrossRefPubMedGoogle Scholar
  94. 94.
    Liu Y, Subrahmanyam R, Chakraborty T et al. A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 2007; 27(4):561–571.CrossRefPubMedGoogle Scholar
  95. 95.
    Ramon-Maiques S, Kuo AJ, Carney D et al. The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci USA 2007; 104(48):18993–18998.CrossRefPubMedGoogle Scholar
  96. 96.
    Hizi A, Levin HL. The integrase of the long terminal repeat-retrotransposon tf1 has a chromodomain that modulates integrase activities. J Biol Chem 2005; 280(47):39086–39094.CrossRefPubMedGoogle Scholar
  97. 97.
    Malik HS, Eickbush TH. Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 1999; 73(6):5186–5190.PubMedGoogle Scholar
  98. 98.
    Nagaki K, Neumann P, Zhang D et al. Structure, divergence and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 2005; 22(4):845–855.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Adam G. W. Matthews
    • 1
    • 2
    Email author
  • Marjorie A. Oettinger
    • 1
    • 2
  1. 1.Department of Molecular BiologyMassachusetts General HospitalBostonUSA
  2. 2.Department of GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations