Normal and Pathological V(D)J Recombination: Contribution to the Understanding of Human Lymphoid Malignancies

  • Saïda Dadi
  • Sandrine Le Noir
  • Vahid Asnafi
  • Kheïra Beldjord
  • Elizabeth A. Macintyre
Part of the Advances in Experimental Medicine and Biology book series (volume 650)


The majority of haematological cancers involve the lymphoid system. They include acute lymphoblastic leukemias (ALL), which are arrested at variable stages of development and present with blood and bone marrow involvement and chronic leukemias, lymphomas and myelomas, which present with infiltration of a large variety of hematopoietic and non hematopoietic tissues by mature lymphoid cells which express a surface antigen receptor. The majority involve the B-cell lineage and the vast majority have undergone clonal rearrangement of their Ig and/or TCR rearrangements. Analysis of Ig/TCR genomic V(D)J repertoires by PCR based lymphoid clonality analysis within a diagnostic setting allows distinction of clonal from reactive lymphoproliferative disorders, clonal tracking for evidence of tumor dissemination and follow-up, identification of a lymphoid origin in undiagnosed tumors and evaluation of clonal evolution. Ig/TCR VDJ errors are also at the origin of recombinase mediated deregulated expression of a variety of proto-oncogenes in ALL, whereas in lymphoma it is increasingly clear that IgH containing translocations result from abnormalities other than VDJ errors (somatic hypermutation and/or isotype switching). In addition to this mechanistic contribution to lymphoid oncogenesis, it is possible that failure to successfully complete expression of an appropriate Ig or TCR may lead to maturation arrest in a lymphoid precursor, which may in itself contribute to altered tissue homeostasis, particularly if the arrest occurs at a stage of cellular expansion.


Acute Lymphoblastic Leukemia Chronic Lymphocytic Leukemia Minimal Residual Disease Chromosomal Translocation Lymphoid Malignancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beishuizen A, Verhoeven MA, Mol EJ et al. Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 1993; 7(12):2045–2053.PubMedGoogle Scholar
  2. 2.
    Langerak AW, Wolvers-Tettero IL, van Dongen JJ. Detection of T-cell receptor beta (TCRB) gene rearrangement patterns in T-cell malignancies by Southern blot analysis. Leukemia 1999; 13(6):965–974.PubMedCrossRefGoogle Scholar
  3. 3.
    van Krieken JH, Elwood L, Andrade RE et al. Rearrangement of the T-cell receptor delta chain gene in T-cell lymphomas with a mature phenotype. Am J Pathol 1991; 139(1):161–168.PubMedGoogle Scholar
  4. 4.
    Langerak AW, Szczepanski T, van der Burg M et al. Heteroduplex PCR analysis of rearranged T-cell receptor genes for clonality assessment in suspect T-cell proliferations. Leukemia 1997; 11(12):2192–2199.PubMedCrossRefGoogle Scholar
  5. 5.
    Gonzalez M, Gonzalez D, Lopez-Perez R et al. Heteroduplex analysis of VDJ amplified segments from rearranged IgH genes for clonality assessments in B-cell non-Hodgkin’s lymphoma. A comparison between different strategies. Haematologica 1999; 84(9):779–784.PubMedGoogle Scholar
  6. 6.
    Derksen PW, Langerak AW, Kerkhof E et al. Comparison of different polymerase chain reaction-based approaches for clonality assessment of immunoglobulin heavy-chain gene rearrangements in B-cell neoplasia. Mod Pathol 1999; 12(8):794–805.PubMedGoogle Scholar
  7. 7.
    Krafft AE, Taubenberger JK, Sheng ZM et al. Enhanced sensitivity with a novel TCRgamma PCR assay for clonality studies in 569 formalin-fixed, paraffin-embedded (FFPE) cases. Mol Diagn 1999; 4(2):119–133.PubMedCrossRefGoogle Scholar
  8. 8.
    Assaf C, Hummel M, Dippel E et al. High detection rate of T-cell receptor beta chain rearrangements in T-cell lymphoproliferations by family specific polymerase chain reaction in combination with the GeneScan technique and DNA sequencing. Blood 2000; 96(2):640–646.PubMedGoogle Scholar
  9. 9.
    Theriault C, Galoin S, Valmary S et al. PCR analysis of immunoglobulin heavy chain (IgH) and TcR-gamma chain gene rearrangements in the diagnosis of lymphoproliferative disorders: results of a study of 525 cases. Mod Pathol 2000; 13(12):1269–1279.PubMedCrossRefGoogle Scholar
  10. 10.
    van Dongen JJ. Analysis of immunoglobulin genes and T-cell receptor genes as a diagnostic tool for the detection of lymphoid malignancies. Neth J Med 1987; 31(5–6):201–209.PubMedGoogle Scholar
  11. 11.
    Gleissner B, Maurer J, Thiel E. Detection of immunoglobulin heavy chain genes rearrangements in B-cell leukemias, lymphomas, multiple myelomas, monoclonal and polyclonal gammopathies. Leuk Lymphoma 2000; 39(1–2):151–155.PubMedGoogle Scholar
  12. 12.
    Sen F, Vega F, Medeiros LJ. Molecular genetic methods in the diagnosis of hematologic neoplasms. Semin Diagn Pathol 2002; 19(2):72–93.PubMedGoogle Scholar
  13. 13.
    Langerak AW, van Krieken JH, Wolvers-Tettero IL et al. The role of molecular analysis of immunoglobulin and T-cell receptor gene rearrangements in the diagnosis of lymphoproliferative disorders. J Clin Pathol 2001; 54(7):565–567.PubMedCrossRefGoogle Scholar
  14. 14.
    Miqueu P, Guillet M, Degauque N et al. Statistical analysis of CDR3 length distributions for the assessment of T and B-cell repertoire biases. Mol Immunol 2007; 44(6):1057–1064.PubMedCrossRefGoogle Scholar
  15. 15.
    van Dongen JJ, Langerak AW, Bruggemann M et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17(12):2257–2317.PubMedCrossRefGoogle Scholar
  16. 16.
    van der Velden VH, Cazzaniga G, Schrauder A et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21(4):604–611.PubMedGoogle Scholar
  17. 17.
    Delabesse E, Burtin ML, Millien C et al. Rapid, multifluorescent TCRG Vgamma and Jgamma typing: application to T-cell acute lymphoblastic leukemia and to the detection of minor clonal populations. Leukemia 2000; 14(6):1143–1152.PubMedCrossRefGoogle Scholar
  18. 18.
    van Krieken JH, Langerak AW, San Miguel JF et al. Clonality analysis for antigen receptor genes: preliminary results from the Biomed-2 concerted action PL 96-3936. Hum Pathol 2003; 34(4):359–361.PubMedCrossRefGoogle Scholar
  19. 19.
    Droese J, Langerak AW, Groenen PJ et al. Validation of BIOMED-2 multiplex PCR tubes for detection of TCRB gene rearrangements in T-cell malignancies. Leukemia 2004; 18(9):1531–1538.PubMedCrossRefGoogle Scholar
  20. 20.
    Evans PA, Pott C, Groenen PJ et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 2007; 21(2):207–214.PubMedCrossRefGoogle Scholar
  21. 21.
    van Krieken JH, Langerak AW, Macintyre EA et al. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 2007; 21(2):201–206.PubMedCrossRefGoogle Scholar
  22. 22.
    Bruggemann M, White H, Gaulard P et al. Powerful strategy for polymerase chain reaction-based clonality assessment in T-cell malignancies Report of the BIOMED-2 Concerted Action BHM4 CT98-3936. Leukemia 2007; 21(2):215–221.PubMedCrossRefGoogle Scholar
  23. 23.
    Langerak AW, Molina TJ, Lavender FL et al. Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2007; 21(2):222–229.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu H, Bench AJ, Bacon CM et al. A practical strategy for the routine use of BIOMED-2 PCR assays for detection of B-and T-cell clonality in diagnostic haematopathology. Br J Haematol 2007; 138(1):31–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Asnafi V, Beldjord K, Garand R et al. IgH DJ rearrangements within T-ALL correlate with cCD79a expression, an immature/TCRgammadelta phenotype and absence of IL7Ralpha/CD127 expression. Leukemia 2004; 18(12):1997–2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Kitchingman GR, Rovigatti U, Mauer AM et al. Rearrangement of immunoglobulin heavy chain genes in T-cell acute lymphoblastic leukemia. Blood 1985; 65(3):725–729.PubMedGoogle Scholar
  27. 27.
    Szczepanski T, Pongers-Willemse MJ, Langerak AW et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements and are rare in T-cell receptor alpha beta lineage. Blood 1999; 93(12):4079–4085.PubMedGoogle Scholar
  28. 28.
    Chen Z, Le Paslier D, Dausset J et al. Human T-cell gamma genes are frequently rearranged in B-lineage acute lymphoblastic leukemias but not in chronic B-cell proliferations. J Exp Med 1987; 165(4):1000–1015.PubMedCrossRefGoogle Scholar
  29. 29.
    Brumpt C, Delabesse E, Beldjord K et al. The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood 2000; 96(6):2254–2261.PubMedGoogle Scholar
  30. 30.
    Greaves M. Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer 1999; 35(14):1941–1953.PubMedCrossRefGoogle Scholar
  31. 31.
    Greaves M. Childhood leukaemia. BMJ 2002; 324(7332):283–287.PubMedCrossRefGoogle Scholar
  32. 32.
    Graux C, Cools J, Michaux L et al. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20(9):1496–1510.PubMedCrossRefGoogle Scholar
  33. 33.
    O’Neil J, Look AT. Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene 2007; 26(47):6838–6849.PubMedCrossRefGoogle Scholar
  34. 34.
    Argiropoulos B, Humphries RK. Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007; 26(47):6766–6776.PubMedCrossRefGoogle Scholar
  35. 35.
    Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005; 23(26):6306–6315.PubMedCrossRefGoogle Scholar
  36. 36.
    Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000; 96(3):808–822.PubMedGoogle Scholar
  37. 37.
    Stern MH, Lipkowitz S, Aurias A et al. Inversion of chromosome 7 in ataxia telangiectasia is generated by a rearrangement between T-cell receptor beta and T-cell receptor gamma genes. Blood 1989; 74(6):2076–2080.PubMedGoogle Scholar
  38. 38.
    Mullighan CG, Goorha S, Radtke I et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446(7137):758–764.PubMedCrossRefGoogle Scholar
  39. 39.
    Fuscoe JC, Zimmerman LJ, Lippert MJ et al. V(D)J recombinase-like activity mediates hprt gene deletion in human fetal T-lymphocytes. Cancer Res 1991; 51(21):6001–6005.PubMedGoogle Scholar
  40. 40.
    Fuscoe JC, Zimmerman LJ, Harrington-Brock K et al. Deletion mutations in the hprt gene of T-lymphocytes as a biomarker for genomic rearrangements important in human cancers. Carcinogenesis 1994; 15(7):1463–1466.PubMedCrossRefGoogle Scholar
  41. 41.
    Fuscoe JC, Zimmerman LJ, Harrington-Brock K et al. Large deletions are tolerated at the hprt locus of in vivo derived human T-lymphocytes. Mutat Res 1992; 283(4):255–262.PubMedCrossRefGoogle Scholar
  42. 42.
    Finette BA, Kendall H, Vacek PM. Mutational spectral analysis at the HPRT locus in healthy children. Mutat Res 2002; 505(1–2):27–41.PubMedGoogle Scholar
  43. 43.
    Digweed M. Human genetic instability syndromes: single gene defects with increased risk of cancer. Toxicol Lett 1993; 67(1–3):259–281.PubMedCrossRefGoogle Scholar
  44. 44.
    Marculescu R, Vanura K, Montpellier B et al. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures. DNA Repair (Amst) 2006; 5(9–10):1246–1258.CrossRefGoogle Scholar
  45. 45.
    Dupret C, Asnafi V, Leboeuf D et al. IgH/TCR rearrangements are common in MLL translocated adult AML and suggest an early T/myeloid or B/myeloid maturation arrest, which correlates with the MLL partner. Leukemia 2005; 19(12):2337–2338.PubMedCrossRefGoogle Scholar
  46. 46.
    Asnafi V, Beldjord K, Boulanger E et al. Analysis of TCR, pT alpha and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003; 101(7):2693–2703.PubMedCrossRefGoogle Scholar
  47. 47.
    Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ et al. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 2001; 98(8):2456–2465.PubMedCrossRefGoogle Scholar
  48. 48.
    Ghosh JK, Romanow WJ, Murre C. Induction of a diverse T-cell receptor gamma/delta repertoire by the helix-loop-helix proteins E2A and HEB in nonlymphoid cells. J Exp Med 2001; 193(6):769–776.PubMedCrossRefGoogle Scholar
  49. 49.
    Marculescu R, Le T, Simon P et al. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J Exp Med 2002; 195(1):85–98.PubMedCrossRefGoogle Scholar
  50. 50.
    Lieber MR, Yu K, Raghavan SC. Roles of nonhomologous DNA end joining, V(D)J recombination and class switch recombination in chromosomal translocations. DNA Repair (Amst) 2006; 5(9–10):1234–1245.CrossRefGoogle Scholar
  51. 51.
    Tsujimoto Y, Gorham J, Cossman J et al. The t(14; 18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 1985; 229(4720):1390–1393.PubMedCrossRefGoogle Scholar
  52. 52.
    Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/ immunoglobulin transcript resulting from the t(14; 18) translocation. Cell 1986; 47(1):19–28.PubMedCrossRefGoogle Scholar
  53. 53.
    Tsujimoto Y, Croce CM. Analysis of the structure, transcripts and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 1986; 83(14):5214–5218.PubMedCrossRefGoogle Scholar
  54. 54.
    Schlissel MS, Kaffer CR, Curry JD. Leukemia and lymphoma: a cost of doing business for adaptive immunity. Genes Dev 2006; 20(12):1539–1544.PubMedCrossRefGoogle Scholar
  55. 55.
    Dalla-Favera R, Martinotti S, Gallo RC et al. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 1983; 219(4587):963–967.PubMedCrossRefGoogle Scholar
  56. 56.
    Davis M, Malcolm S, Rabbitts TH. Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells. Nature 1984; 308(5956):286–288.PubMedCrossRefGoogle Scholar
  57. 57.
    Hollis GF, Mitchell KF, Battey J et al. A variant translocation places the lambda immunoglobulin genes 3′ to the c-myc oncogene in Burkitt’s lymphoma. Nature 1984; 307(5953):752–755.PubMedCrossRefGoogle Scholar
  58. 58.
    Manolov G, Manolova Y. Marker band in one chromosome 14 from Burkitt lymphomas. Nature 1972; 237(5349):33–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Willis TG, Zalcberg IR, Coignet LJ et al. Molecular cloning of translocation t(1; 14)(q21; q32) defines a novel gene (BCL9) at chromosome 1q21. Blood 1998; 91(6):1873–1881.PubMedGoogle Scholar
  60. 60.
    Kawamata N, Sakajiri S, Sugimoto KJ et al. A novel chromosomal translocation t(1; 14)(q25; q32) in preB acute lymphoblastic leukemia involves the LIM homeodomain protein gene, Lhx4. Oncogene 2002; 21(32):4983–4991.PubMedCrossRefGoogle Scholar
  61. 61.
    Bellido M, Aventin A, Lasa A et al. Id4 is deregulated by a t(6; 14)(p22; q32) chromosomal translocation in a B-cell lineage acute lymphoblastic leukemia. Haematologica 2003; 88(9):994–1001.PubMedGoogle Scholar
  62. 62.
    Meeker TC, Hardy D, Willman C et al. Activation of the interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with cosinophilia. Blood 1990; 76(2):285–289.PubMedGoogle Scholar
  63. 63.
    Akasaka T, Balasas T, Russell LJ et al. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2007; 109(8):3451–3461.PubMedCrossRefGoogle Scholar
  64. 64.
    Raimondi SC, Behm FG, Roberson PK et al. Cytogenetics of childhood T-cell leukemia. Blood 1988; 72(5):1560–1566.PubMedGoogle Scholar
  65. 65.
    Hatano M, Roberts CW, Minden M et al. Deregulation of a homeobox gene, HOX11, by the t(10; 14) in T-cell leukemia. Science 1991; 253(5015):79–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Dube ID, Kamel-Reid S, Yuan CC et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10; 14). Blood 1991; 78(11):2996–3003.PubMedGoogle Scholar
  67. 67.
    Kennedy MA, Gonzalez-Sarmiento R, Kees UR et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 1991; 88(20):8900–8904.PubMedCrossRefGoogle Scholar
  68. 68.
    McGuire EA, Hockett RD, Pollock KM et al. The t(11; 14)(p15; q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 1989; 9(5):2124–2132.PubMedGoogle Scholar
  69. 69.
    Royer-Pokora B, Loos U, Ludwig WD. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11; 14)(p13; q11). Oncogene 1991; 6(10):1887–1893.PubMedGoogle Scholar
  70. 70.
    Van Vlierberghe P, van Grotel M, Beverloo HB et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 2006; 108(10):3520–3529.PubMedCrossRefGoogle Scholar
  71. 71.
    Boehm T, Foroni L, Kaneko Y et al. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 1991; 88(10):4367–4371.PubMedCrossRefGoogle Scholar
  72. 72.
    Bernard O, Barin C, Charrin C et al. Characterization of translocation t(1; 14)(p32; q11) in a T and in a B acute leukemia. Leukemia 1993; 7(10):1509–1513.PubMedGoogle Scholar
  73. 73.
    Aplan PD, Lombardi DP, Ginsberg AM et al. Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 1990; 250(4986):1426–1429.PubMedCrossRefGoogle Scholar
  74. 74.
    Mellentin JD, Smith SD, Cleary ML. lyl-1, a novel gene altered by chromosomal translocation in T-cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 1989; 58(1):77–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Xia Y, Brown L, Yang CY et al. TAL2, a helix-loop-helix gene activated by the (7; 9)(q34; q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 1991; 88(24):11416–11420.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang J, Jani-Sait SN, Escalon EA et al. The t(14; 21)(q11.2; q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci USA 2000; 97(7):3497–3502.PubMedCrossRefGoogle Scholar
  77. 77.
    Baer R. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T-cell acute leukaemia. Semin Cancer Biol 1993; 4(6):341–347.PubMedGoogle Scholar
  78. 78.
    O’Neil J, Billa M, Oikemus S et al. The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice. Oncogene 2001; 20(29):3897–3905.PubMedCrossRefGoogle Scholar
  79. 79.
    Bain G, Engel I, Robanus Maandag EC et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997; 17(8):4782–4791.PubMedGoogle Scholar
  80. 80.
    Yan W, Young AZ, Soares VC et al. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol 1997; 17(12):7317–7327.PubMedGoogle Scholar
  81. 81.
    O’Neil J, Shank J, Cusson N et al. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 2004; 5(6):587–596.PubMedCrossRefGoogle Scholar
  82. 82.
    Hawley RG, Fong AZ, Lu M et al. The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. Oncogene 1994; 9(1):1–12.PubMedGoogle Scholar
  83. 83.
    Hawley RG, Fong AZ, Reis MD et al. Transforming function of the HOX11/TCL3 homeobox gene. Cancer Res 1997; 57(2):337–345.PubMedGoogle Scholar
  84. 84.
    Kawabe T, Muslin AJ, Korsmeyer SJ. HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 1997; 385(6615):454–458.PubMedCrossRefGoogle Scholar
  85. 85.
    Riz I, Hawley RG. G1/S transcriptional networks modulated by the HOX11/TLX1 oncogene of T-cell acute lymphoblastic leukemia. Oncogene 2005; 24(36):5561–5575.PubMedCrossRefGoogle Scholar
  86. 86.
    Bernard OA, Busson-LeConiat M, Ballerini P et al. A new recurrent and specific cryptic translocation, t(5; 14)(q35; q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15(10):1495–1504.PubMedCrossRefGoogle Scholar
  87. 87.
    MacLeod RA, Nagel S, Kaufmann M et al. Activation of HOX11L2 by juxtaposition with 3′-BCL11B in an acute lymphoblastic leukemia cell line (HPB-ALL) with t(5; 14)(q35; q32.2). Genes Chromosomes Cancer 2003; 37(1):84–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Hansen-Hagge TE, Schafer M, Kiyoi H et al. Disruption of the RanBP17/Hox11L2 region by recombination with the TCRdelta locus in acute lymphoblastic leukemias with t(5; 14)(q34; q11). Leukemia 2002; 16(11):2205–2212.PubMedCrossRefGoogle Scholar
  89. 89.
    Ferrando AA, Neuberg DS, Staunton J et al. Gene expression signatures define novel oncogenic pathways in T-cell acute lymphoblastic leukemia. Cancer Cell 2002; 1(1):75–87.PubMedCrossRefGoogle Scholar
  90. 90.
    Soulier J, Clappier E, Cayuela JM et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106(1):274–286.PubMedCrossRefGoogle Scholar
  91. 91.
    Speleman F, Cauwelier B, Dastugue N et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19(3):358–366.PubMedCrossRefGoogle Scholar
  92. 92.
    Ohnishi H, Kawamura M, Ida K et al. Homozygous deletions of p16/MTS1 gene are frequent but mutations are infrequent in childhood T-cell acute lymphoblastic leukemia. Blood 1995; 86(4):1269–1275.PubMedGoogle Scholar
  93. 93.
    Cayuela JM, Madani A, Sanhes L et al. Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood 1996; 87(6):2180–2186.PubMedGoogle Scholar
  94. 94.
    Ellisen LW, Bird J, West DC et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66(4):649–661.PubMedCrossRefGoogle Scholar
  95. 95.
    Burnett RC, Thirman MJ, Rowley JD et al. Molecular analysis of the T-cell acute lymphoblastic leukemia-associated t(1; 7)(p34; q34) that fuses LCK and TCRB. Blood 1994; 84(4):1232–1236.PubMedGoogle Scholar
  96. 96.
    Burnett RC, David JC, Harden AM et al. The LCK gene is involved in the t(1; 7)(p34; q34) in the T-cell acute lymphoblastic leukemia derived cell line, HSB-2. Genes Chromosomes Cancer 1991; 3(6):461–467.PubMedCrossRefGoogle Scholar
  97. 97.
    Asnafi V, Beldjord K, Libura M et al. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood 2004; 104(13):4173–4180.PubMedCrossRefGoogle Scholar
  98. 98.
    Larson RC, Osada H, Larson TA et al. The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene 1995; 11(5):853–862.PubMedGoogle Scholar
  99. 99.
    Aplan PD, Jones CA, Chervinsky DS et al. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J 1997; 16(9):2408–2419.PubMedCrossRefGoogle Scholar
  100. 100.
    Carroll AJ, Crist WM, Link MP et al. The t(1; 14)(p34; q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1990; 76(6):1220–1224.PubMedGoogle Scholar
  101. 101.
    Tycko B, Smith SD, Sklar J. Chromosomal translocations joining LCK and TCRB loci in human T-cell leukemia. J Exp Med 1991; 174(4):867–873.PubMedCrossRefGoogle Scholar
  102. 102.
    Le Coniat M, Della Valle V, Marynen P et al. A new breakpoint, telomeric to TEL/ETV6, on the short arm of chromosome 12 in T-cell acute lymphoblastic leukemia. Leukemia 1997; 11(8):1360–1363.PubMedCrossRefGoogle Scholar
  103. 103.
    Karrman K, Andersson A, Bjorgvinsdottir H et al. Deregulation of cyclin D2 by juxtaposition with T-cell receptor alpha/delta locus in t(12; 14)(p13; q11)-positive childhood T-cell acute lymphoblastic leukemia. Eur J Haematol 2006; 77(1):27–34.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Saïda Dadi
    • 1
    • 2
  • Sandrine Le Noir
    • 3
  • Vahid Asnafi
    • 3
  • Kheïra Beldjord
    • 3
  • Elizabeth A. Macintyre
    • 3
  1. 1.Centre d’Immunologie de Marseille-LuminyUniversité d’Aix MarseilleMarseilleFrance
  2. 2.CNRS, UMR 6102Inserm, U 631MarseilleFrance
  3. 3.INSERM EMI U0210 Hôpital Necker-Enfants MaladesAP-HP, Université Paris-DescartesParisFrance

Personalised recommendations