Regulation of V(D)J Recombination by E-Protein Transcription Factors

Part of the Advances in Experimental Medicine and Biology book series (volume 650)


Extensive study of the E-proteins E2A and HEB during lymphocyte development has revealed various functions for these bHLH transcription factors in regulating V(D)J recombination in both B- and T-cells. The study of E-proteins in mammals began with the identification of E2A by its ability to bind immunoglobulin heavy and light chain enhancers. Subsequent analysis has identified numerous roles for E2A and HEB at the immunoglobulin and T-cell receptor loci. E-protein targets also include the rag genes and other factors critical for recombination and for regulation of the developmental windows when cells undergo recombination. E-proteins appear to be master regulators that coordinate antigen receptor gene rearrangement and expression. This chapter focuses on how E-proteins regulate V(D)J recombination by activating transcription, initiating rearrangement and driving differentiation during B- and T-cell development.


Chromatin Accessibility Double Positive Transcriptional Enhancer Nonlymphoid Cell Surrogate Light Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ephrussi A, Church GM, Tonegawa S et al. B lineage—specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 1985; 227(4683):134–140.CrossRefPubMedGoogle Scholar
  2. 2.
    Church GM, Ephrussi A, Gilbert W et al. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature 1985; 313(6005):798–801.CrossRefPubMedGoogle Scholar
  3. 3.
    Murre C, McCaw PS, Vaessin H et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 1989; 58(3):537–544.CrossRefPubMedGoogle Scholar
  4. 4.
    Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins. Cell 1989; 56(5):777–783.CrossRefPubMedGoogle Scholar
  5. 5.
    Jan YN, Jan LY. HLH proteins, fly neurogenesis and vertebrate myogenesis. Cell 1993; 75(5):827–830.CrossRefPubMedGoogle Scholar
  6. 6.
    Murre C. Helix-loop-helix proteins and lymphocyte development. Nat Immunol 2005; 6(11):1079–1086.CrossRefPubMedGoogle Scholar
  7. 7.
    Greenbaum S, Zhuang Y. Identification of E2A target genes in B-lymphocyte development by using a gene tagging-based chromatin immunoprecipitation system. Proc Natl Acad Sci USA 2002; 99(23):15030–15035.CrossRefPubMedGoogle Scholar
  8. 8.
    Murre C, Voronova A, Baltimore D. B-cell-and myocyte-specific E2-box-binding factors contain E12/E47-like subunits. Mol Cell Biol 1991, 11(2):1156–1160.PubMedGoogle Scholar
  9. 9.
    Henthorn P, Kiledjian M, Kadesch T. Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science 1990; 247(4941):467–470.CrossRefPubMedGoogle Scholar
  10. 10.
    Greenbaum S, Lazorchak AS, Zhuang Y. Differential functions for the transcription factor E2A in positive and negative gene regulation in pre-B-lymphocytes. J Biol Chem 2004; 279(43):45028–45035.CrossRefPubMedGoogle Scholar
  11. 11.
    Brekke KM, Garrard WT. Assembly and analysis of the mouse immunoglobulin kappa gene sequence. Immunogenetics 2004; 56(7):490–505.CrossRefPubMedGoogle Scholar
  12. 12.
    Ho IC, Yang LH, Morle G et al. A T-cell-specific transcriptional enhancer element 3′ of C alpha in the human T-cell receptor alpha locus. Proc Natl Acad Sci USA 1989; 86(17):6714–6718.CrossRefPubMedGoogle Scholar
  13. 13.
    Takeda J, Cheng A, Mauxion F et al. Functional analysis of the murine T-cell receptor beta enhancer and characteristics of its DNA-binding proteins. Mol Cell Biol 1990; 10(10):5027–5035.PubMedGoogle Scholar
  14. 14.
    Gottschalk LR, Leiden JM. Identification and functional characterization of the human T-cell receptor beta gene transcriptional enhancer: common nuclear proteins interact with the transcriptional regulatory elements of the T-cell receptor alpha and beta genes. Mol Cell Biol 1990; 10(10):5486–5495.PubMedGoogle Scholar
  15. 15.
    Tripathi RK, Mathieu N, Spicuglia S et al. Definition of a T-cell receptor beta gene core enhancer of V(D)J recombination by transgenic mapping. Mol Cell Biol 2000; 20(1):42–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Krangel MS. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 2003; 4(7):624–630.CrossRefPubMedGoogle Scholar
  17. 17.
    Abarrategui I, Krangel MS. Regulation of T-cell receptor-alpha gene recombination by transcription. Nat Immunol 2006; 7(10):1109–1115.CrossRefPubMedGoogle Scholar
  18. 18.
    Choi JK, Shen CP, Radomska HS et al. E47 activates the Ig-heavy chain and TdT loci in non-B-cells. EMBO J 1996; 15(18):5014–5021.PubMedGoogle Scholar
  19. 19.
    Schlissel M, Voronova A, Baltimore D. Helix-loop-helix transcription factor E47 activates germ-line immunoglobulin heavy-chain gene transcription and rearrangement in a pre-T-cell line. Genes Dev 1991; 5(8):1367–1376.CrossRefPubMedGoogle Scholar
  20. 20.
    Kee BL, Murre C. Induction of early B-cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J Exp Med 1998; 188(4):699–713.CrossRefPubMedGoogle Scholar
  21. 21.
    Romanow WJ, Langerak AW, Goebel P et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell 2000; 5(2):343–353.CrossRefPubMedGoogle Scholar
  22. 22.
    Wilson RB, Kiledjian M, Shen CP et al. Repression of immunoglobulin enhancers by the helix-loop-helix protein Id: implications for B-lymphoid-cell development. Mol Cell Biol 1991; 11(12):6185–6191.PubMedGoogle Scholar
  23. 23.
    Lazorchak AS, Schlissel MS, Zhuang Y. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin kappa locus in pre-B-cells. Mol Cell Biol 2006; 26(3):810–821.CrossRefPubMedGoogle Scholar
  24. 24.
    Bemark M, Liberg D, Leanderson T. Conserved sequence elements in K promoters from mice and humans: implications for transcriptional regulation and repertoire expression. Immunogenetics 1998; 47(3):183–195.CrossRefPubMedGoogle Scholar
  25. 25.
    Ghosh JK, Romanow WJ, Murre C. Induction of a diverse T-cell receptor gamma/delta repertoire by the helix-loop-helix proteins E2A and HEB in nonlymphoid cells J Exp Med 2001; 193(6):769–776.Google Scholar
  26. 26.
    Chen F, Rowen L, Hood L et al. Differential transcriptional regulation of individual TCR V beta segments before gene rearrangement. J Immunol 2001; 166(3):1771–1780.PubMedGoogle Scholar
  27. 27.
    Hsu LY, Lauring J, Liang HE et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B-cells. Immunity 2003; 19(1):105–117.CrossRefPubMedGoogle Scholar
  28. 28.
    Blom B, Heemskerk MH, Verschuren MC et al. Disruption of alpha beta but not of gamma delta T-cell development by overexpression of the helix-loop-helix protein Id3 in committed T-cell progenitors. EMBO J 1999; 18(10):2793–2802.CrossRefPubMedGoogle Scholar
  29. 29.
    Herblot S, Steff AM, Hugo P et al. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1(2):138–144.CrossRefPubMedGoogle Scholar
  30. 30.
    Ikawa T, Kawamoto H, Wright LY et al. Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity 2004; 20(3):349–360.CrossRefPubMedGoogle Scholar
  31. 31.
    Sigvardsson M. Overlapping expression of early B-cell factor and basic helix-loop-helix proteins as a mechanism to dictate B-lineage-specific activity of the lambda5 promoter. Mol Cell Biol 2000; 20(10):3640–3654.CrossRefPubMedGoogle Scholar
  32. 32.
    Sigvardsson M, O’Riordan M, Grosschedl R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 1997; 7(1):25–36.CrossRefPubMedGoogle Scholar
  33. 33.
    Reizis B, Leder P. Expression of the mouse pre-T-cell receptor alpha gene is controlled by an upstream region containing a transcriptional enhancer. J Exp Med 1999; 189(10):1669–1678.CrossRefPubMedGoogle Scholar
  34. 34.
    Maier H, Ostraat R, Gao H et al. Early B-cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol 2004; 5(10):1069–1077.CrossRefPubMedGoogle Scholar
  35. 35.
    Sigvardsson M, Clark DR, Fitzsimmons D et al. Early B-cell factor, E2A and Pax-5 cooperate to activate the early B-cell-specific mb-1 promoter. Mol Cell Biol 2002; 22(24):8539–8551.CrossRefPubMedGoogle Scholar
  36. 36.
    Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ et al. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 2001; 98(8):2456–2465.CrossRefPubMedGoogle Scholar
  37. 37.
    Goebel P, Janney N, Valenzuela JR et al. Localized gene-specific induction of accessibility to V(D)J recombination induced by E2A and early B-cell factor in nonlymphoid cells. J Exp Med 2001; 194(5):645–656.CrossRefPubMedGoogle Scholar
  38. 38.
    Inlay MA, Tian H, Lin T et al. Important roles for E protein binding sites within the immuno-globulin kappa chain intronic enhancer in activating Vkappa Jkappa rearrangement. J Ex Med 2004; 200(9):1205–1211.CrossRefGoogle Scholar
  39. 39.
    Quong MW, Martensson A, Langerak AW et al. Receptor editing and marginal zone B-cell development are regulated by the helix-loop-helix protein, E2A. J Exp Med 2004; 199(8):1101–1112.CrossRefPubMedGoogle Scholar
  40. 40.
    Bain G, Maandag EC, Izon DJ et al. E2A proteins are required for proper B-cell development and initiation of immunoglobulin gene rearrangements. Cell 1994; 79(5):885–892.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B-cell formation. Cell 1994; 79(5):875–884.CrossRefPubMedGoogle Scholar
  42. 42.
    Perlot T, Alt FW, Bassing CH et al. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA 2005; 102(40):14362–14367.CrossRefPubMedGoogle Scholar
  43. 43.
    Schwartz R, Engel I, Fallahi-Sichani M et al. Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling and T lineage development. Proc Natl Acad Sci USA 2006; 103(26):9976–9981.CrossRefPubMedGoogle Scholar
  44. 44.
    Ikawa T, Kawamoto H, Goldrath AW et al. E proteins and Notch signaling cooperate to promote T-cell lineage specification and commitment. J Exp Med 2006; 203(5):1329–1342.CrossRefPubMedGoogle Scholar
  45. 45.
    Shimizu T, Mundt C, Licence S et al. Vpre-B1/Vpre-B2/lambda 5 triple-deficient mice show impaired B-cell development but functional allelic exclusion of the IgH locus. J Immunol 2002; 168(12):6286–6293.PubMedGoogle Scholar
  46. 46.
    Bain G, Engel I, Robanus Maandag EC et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997; 17(8):4782–4791.PubMedGoogle Scholar
  47. 47.
    Barndt R, Dai MF, Zhuang Y. A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during alpha beta thymopoiesis. J Immunol 1999; 163(6):3331–3343.PubMedGoogle Scholar
  48. 48.
    Barndt RJ, Dai M, Zhuang Y. Functions of E2A-HEB heterodimers in T-cell development revealed by a dominant negative mutation of HEB. Mol Cell Biol 2000; 20(18):6677–6685.CrossRefPubMedGoogle Scholar
  49. 49.
    Wojciechowski J, Lai A, Kondo M et al. E2A and HEB Are Required to Block Thymocyte Proliferation Prior to Pre-TCR Expression. J Immunol 2007; 178(9):5717–5726.PubMedGoogle Scholar
  50. 50.
    Raulet DH. The structure, function and molecular genetics of the gamma/delta T-cell receptor. Annu Rev Immunol 1989; 7:175–207.CrossRefPubMedGoogle Scholar
  51. 51.
    Bain G, Romanow WJ, Albers K et al. Positive and negative regulation of V(D)J recombination by the E2A proteins. J Exp Med 1999; 189(2):289–300.CrossRefPubMedGoogle Scholar
  52. 52.
    David-Fung ES, Yui MA, Morales M et al. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol Rev 2006; 209:212–236.CrossRefPubMedGoogle Scholar
  53. 53.
    Xi H, Schwartz R, Engel I et al. Interplay between RORgammat, Egr3 and E proteins controls proliferation in response to pre-TCR signals. Immunity 2006; 24(6):813–826.CrossRefPubMedGoogle Scholar
  54. 54.
    Sun Z, Unutmaz D, Zou YR et al. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 2000; 288(5475):2369–2373.CrossRefPubMedGoogle Scholar
  55. 55.
    Kurebayashi S, Ueda E, Sakaue M et al. Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA 2000; 97(18):10132–10137.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang F, Huang CY, Kanagawa O. Rapid deletion of rearranged T-cell antigen receptor (TCR) Valpha-Jalpha segment by secondary rearrangement in the thymus: role of continuous rearrangement of TCR alpha chain gene and positive selection in the T-cell repertoire formation. Proc Natl Acad Sci USA 1998; 95(20):11834–11839.CrossRefPubMedGoogle Scholar
  57. 57.
    Thompson SD, Pelkonen J, Hurwitz JL. First T-cell receptor alpha gene rearrangements during T-cell ontogeny skew to the 5′ region of the J alpha locus. J Immunol 1990; 145(7):2347–2352.PubMedGoogle Scholar
  58. 58.
    Petrie HT, Livak F, Burtrum D et al. T-cell receptor gene recombination patterns and mechanisms: cell death, rescue and T-cell production. J Exp Med 1995; 182(1):121–127.CrossRefPubMedGoogle Scholar
  59. 59.
    Guo J, Hawwari A, Li H et al. Regulation of the TCRalpha repertoire by the survival window of CD4(+) CD8(+) thymocytes. Nat Immunol 2002; 3(5):469–476.CrossRefPubMedGoogle Scholar
  60. 60.
    Eckner R, Yao TP, Oldread E et al. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev 1996; 10(19):2478–2490.CrossRefPubMedGoogle Scholar
  61. 61.
    Qiu Y, Sharma A, Stein R. p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol Cell Biol 1998; 18(5):2957–2964.PubMedGoogle Scholar
  62. 62.
    Bradney C, Hjelmeland M, Komatsu Y et al. Regulation of E2A activities by histone acetyltransferases in B-lymphocyte development. J Biol Chem 2003; 278(4):2370–2376.CrossRefPubMedGoogle Scholar
  63. 63.
    Massari ME, Grant PA, Pray-Grant MG et al. A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol Cell 1999; 4(1):63–73.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhang J, Kalkum M, Yamamura S et al. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 2004; 305(5688):1286–1289.CrossRefPubMedGoogle Scholar
  65. 65.
    Hug BA, Lazar MA. ETO interacting proteins. Oncogene 2004; 23(24):4270–4274.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations