Advertisement

A Comparative Study of the Kinematics of Trunk-to-Trunk Leaping in Callimico goeldii, Callithrix jacchus, and Cebuella pygmaea

  • Paul A. Garber
  • Ana Sallenave
  • Gregory E. Blomquist
  • Gustl Anzenberger
Chapter
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Abstract

Callitrichids are characterized by a highly variable positional repertoire, which includes prehensile behaviors on small, flexible supports, and claw-clinging, scansorial travel, and trunk-to-trunk leaping that commonly occurs on large noncompliant supports. In this study, we examine the kinematics of trunk-to-trunk leaping in callimico (C. goeldii), the common marmoset (Callithrix jacchus), and the pygmy marmoset (Cebuella pygmaea). In the wild, each species is reported to exploit vertical trunks during locomotor and feeding behavior. These species differ, however, in body mass and limb proportions. Compared to common marmosets and pygmy marmosets, callimicos are heavier and have relatively longer hindlimbs.

Video sequences of leaping to and from noncompliant vertical poles were collected on captive family groups of callimicos and marmosets housed at the Primate Facility of the Anthropological Institute, University of Zuerich, Switzerland. Data from 438 leaps were analyzed using equations provided by Warren and Crompton (1998a).

During all trunk-to-trunk leaps, Callimico, Callithrix, and Cebuella were characterized by forelimb-first landing. Results indicate that C. jacchus failed to leap a distance of 2 m between vertical poles, whereas Callimico leaped this distance frequently. The maximum distance leaped by Cebuella was 1.4 m. Two patterns of trunk-to-trunk leaping were identified. In both common marmosets and pygmy marmosets, leaps were characterized by a relatively low angled body orientation at takeoff, low takeoff velocity, an in-air trajectory characterized by significant vertical height loss, and relatively high compressive forces during landing. In contrast, callimico’s long powerful hindlimbs acted to generate higher velocities at takeoff, an in-air trajectory resulting in a height gain during all but the longest leaps, and a reduction in travel velocity when arriving at the landing substrate. The mechanical cost of transport (C) was relatively constant across different leaping distances for callimico, but increased significantly with increased leaping distance in the other two marmoset species. Overall, it appears that these three marmoset taxa are characterized by different patterns of positional behavior and exploit vertical trunks in different ways.

Keywords

Height Loss Common Marmoset Vertical Height Vertical Support Adult Body Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

Los calitrícidos están caracterizados por un repertorio de posturas altamente variable que incluye tanto conductas prensiles en pequeños soportes flexibles, así como el agarre y ascenso con las garras y el salto de tronco a tronco que comúnmente ocurre sobre soportes grandes y difíciles. En este estudio, examinamos las cinemáticas del salto de tronco en tronco en los calimicos (Callimico goeldi), las marmosetas comunes (Callithrix jacchus) y las marmosetas pigmeas (Cebuella pygmaea). En estado silvestre, se reporta que cada especie utiliza troncos verticales durante las conductas de locomoción y alimentación. Estas especies difieren, sin embargo, en cuanto a la masa corporal y en la proporción de miembros. Comparados con marmosetas comunes y las marmosetas pigmeas, los calimicos son más pesados y tienen miembros traseros relativamente más largos.

Secuencias de video de salto hacia y desde postes verticales difíciles fueron colectadas de grupos familiares cautivos de calimicos y marmosetas resguardados en las instalaciones para primates del Instituto Antropológico de la Universidad de Zurich, Suiza. Los datos de 438 saltos fueron analizados utilizando las ecuaciones proporcionadas por Warren y Crompton (1998a).

Durante todos los saltos de tronco a tronco, Callimico, Callithrix y Cebuella estuvieron caracterizados por aterrizajes con los miembros anteriores. Los resultados indican que C. jacchus falló al saltar a una distancia de 2 metros entre los postes verticales, mientras que C. goeldii saltó frecuentemente dicha distancia. La distancia máxima saltada por C. pygmea fue de 1.4 m. Dos patrones de salto de tronco a tronco fueron identificados. En ambas marmosetas, los saltos fueron caracterizados por una orientación del cuerpo en un ángulo relativamente bajo al despegue, una velocidad baja de despegue y una trayectoria en el aire caracterizada por la pérdida significativa de altura vertical y fuerzas compresivas relativamente altas durante el aterrizaje. En contraste, los poderosos miembros largos traseros de los calimicos actuaron para generar velocidades más altas al despegue, una trayectoria en el aire resultando en una ganancia de altura durante todos los saltos, excepto los más largos, y una reducción en la velocidad de viaje al llegar al sustrato aterrizaje. El costo mecánico de transporte (C) fue relativamente constante a través de las diferentes distancias de saltos para los calimicos, pero aumentó significativamente con el incremento de la distancia de salto para las dos especies de marmosetas. En general, parece que estos tres taxa de marmosetas están caracterizados por diferentes patrones de comportamiento postural y explotan los troncos verticales de maneras distintas.

Resumo

Os callitriquíneos são caracterizados por um repertório posicional altamente variável que inclui tanto comportamentos preênseis em suportes flexíveis de pequena dimensão como a locomoção com auxílio das garras em troncos verticais e os saltos tronco-a-tronco que comumente ocorrem em suportes verticais inflexíveis de grande dimensão. Neste estudo, examinamos a cinemática dos saltos tronco-a-tronco em micos-de-Goeldi (C. goeldii), micos-estrela (Callithrix acchus) e sagüis-leãozinho (Cebuella pygmaea). Na natureza, estas espécies exploram troncos verticais durante a locomoção e a alimentação. No entanto, elas apresentam diferenças quanto ao tamanho corporal e as proporções dos membros. Comparados aos micos-estrela e sagüis-leãozinho, os micos-de-Goeldi são mais pesados e têm membros anteriores relativamente maiores.

Seqüências de vídeo de saltos para e a partir de postes verticais inflexíveis foram coletadas em grupos familiares de micos-de-Goeldi e sagüis mantidos em cativeiro no Setor de Primatas do Instituto Antropológico da Universidade de Zurique, Suíça. Dados de 438 saltos foram analisados usando equações fornecidas por Warren e Crompton (1998a).

Durante todos os pulos tronco-a-tronco, Callimico, Callithrix e Cebuella caracterizam-se por aterrisarem primeiro os membros anteriores. Os resultados indicaram que C. jacchus não consegue saltar uma distância de 2 metros entre postes verticais, enquanto Callimico salta freqüentemente esta distância. A distância máxima saltada por Cebuella foi de 1,4 m. Dois padrões de salto tronco-a-tronco foram identificados. Em micos-estrela e sagüis-leãozinho, os saltos foram caracteri­zados por uma orientação corporal com ângulo relativamente baixo na decolagem, baixa velocidade de decolagem, uma trajetória no ar caracterizada por uma perda de altura vertical significativa e forças compressivas relativamente altas na aterrisagem. Em contraste, os membros posteriores longos e poderosos dos micos-de-Goeldi geraram altas velocidades de decolagem, uma trajetória no ar resultando em ganho de altura durante todos os saltos, exceto os mais longos, e uma redução na velocidade de deslocamento à medida que o indivíduo se aproxima do substrato de aterrissagem. O custo mecânico do transporte (C) nos micos-de-Goeldi foi relativamente constante entre saltos a diferentes distâncias, mas aumentou significativamente com o aumento da distância de salto nas outras duas espécies. Em resumo, parece que estes três táxons são caracterizados por diferentes padrões de comportamento posicional e exploram troncos verticais de maneiras diferentes.

Notes

Acknowledgments

Funding for this project was provided by the University of Illinois and the A.H. Schultz Foundation (Zuerich). Assistance in stimulating the pygmy marmosets to leap was provided by Jenni Garber and Sara Garber. PAG wishes to thank both Jenni and Sara for working with him on this research project and for their love and continued support. He also wishes to thank Chrissie McKenney for her love and inspiration. GA acknowledges the outstanding efforts of Heinz Galli in animal care and in maintaining the primate colony, and the efforts of Belinda Benz and Claudia Rudolf von Rohr in animal habituation and training. AS wishes to thank Emilio White for collaborating in the video-analysis. We also wish to thank Susan Ford, Lesa Davis, and Leila Porter for inviting us to contribute to this important volume.

References

  1. Araújo A, Arruda MF, Alencar AI, Albuquerque F, Nascimento MC, Yamamoto ME (2000) Body weight of wild and captive common marmosets (Callithrix jacchus). Int J Primatol 21:317–324CrossRefGoogle Scholar
  2. Bicca-Marques JC (1999) Hand specialization, sympatry, and mixed-species associations in callitrichines. J Hum Evol 36:349–378CrossRefPubMedGoogle Scholar
  3. Canavez FC, Moreira MAM, Simon F, Parham P, Seuánez HN (1999) Phylogenetic relationships of the callitrichinae (Platyrrhini, Primates) based on beta2-microglobulin DNA sequences. Am J Primatol 48:225–236CrossRefPubMedGoogle Scholar
  4. Coimbra-Filho AF, Mittermeier RA (1978) Tree-gouging, exudates eating, and the “short-tusked” condition in Callithrix and Cebuella. In: Kleiman DG (ed) The biology and conservation of the Callitrichidae. Smithsonian Institution Press, Washington DC, pp 105–115Google Scholar
  5. Cortés-Ortiz L (this volume) Molecular phylogenetics of the Callitrichidae with an emphasis on the marmosets and Callimico. In: Ford SM, Porter LM, Davis LC (eds) The smallest anthropoids: The marmoset/callimico radiation. Springer Press, New York, pp 3–24Google Scholar
  6. Crompton RH, Sellers WI, Gunther MM (1993) Energetic efficiency and ecology as selective factors in saltatory adaptation of prosimian primates. Proc R Soc London (B) 254:41–45CrossRefGoogle Scholar
  7. Davis LC (2002) Functional morphology of the forelimb and long bones in the Callitrichidae (Platyrrhini: Primates). PhD Thesis, Southern Illinois University at Carbondale, ILGoogle Scholar
  8. Demes B, Jungers WL, Gross TS, Fleagle JG (1995) Kinetics of leaping primates: influence of substrate orientation and compliance. Am J Phys Anthropol 96:419–430CrossRefPubMedGoogle Scholar
  9. Encarnación F, Heymann EW (1998) Body mass of wild Callimico goeldii. Folia Primatol 69:368–371CrossRefPubMedGoogle Scholar
  10. Ford SM, Davis LC (1992) Systematics and body size: implications for feeding adaptations in New World monkeys. Am J Phys Anthropol 88:415–468CrossRefPubMedGoogle Scholar
  11. Ford SM, Davis LC (this volume) Marmoset postcrania and the skeleton of the dwarf marmoset, Callibella humilis. In: Ford SM, Porter LM, Davis LC (eds) The smallest anthropoids: The marmoset/callimico radiation. Springer Press, New York, pp 411–448Google Scholar
  12. Garber PA (1991) A comparative study of positional behavior in three species of tamarin monkeys. Primates 32:219–230CrossRefGoogle Scholar
  13. Garber PA (1992) Vertical clinging, small body size, and the evolution of feeding adaptations in the Callitrichinae. Am J Phys Anthropol 88:469–482CrossRefPubMedGoogle Scholar
  14. Garber PA (1994) Phylogenetic approach to the study of tamarin and marmoset social systems. Am J Primatol 34:99–219CrossRefGoogle Scholar
  15. Garber PA, Leigh SR (1997) Ontogenetic variation in small-bodied New World primates: Implications for patterns of reproduction and infant care. Folia Primatol 68:1–22CrossRefPubMedGoogle Scholar
  16. Garber PA, Leigh SR (2001) Patterns of positional behavior in mixed-species troops of Callimico goeldii, Saguinus labiatus, and Saguinus fuscicollis in northwestern Brazil. Am J Primatol 54:17–31CrossRefPubMedGoogle Scholar
  17. Garber PA, Rosenberger AL, Norconk MA (1996) Marmoset misconceptions. In: Norconk MA, Rosenberger AL, Garber PA (eds) Adaptive radiations of neotropical primates. Plenum, New York, pp 87–95Google Scholar
  18. Garber PA, Blomquist G, Anzenberger G (2005) Kinematic analysis of trunk-to-trunk leaping in Goeldi’s monkey (Callimico goeldii). Int J Primatol 26:217–234CrossRefGoogle Scholar
  19. Hamrick MW (1998) Functional and adaptive significance of primate pads and claws: evidence from New World anthropoids. Am J Phys Anthropol 106:113–128CrossRefPubMedGoogle Scholar
  20. Hershkovitz P (1977) Living New World Monkeys (Platyrrhini), with an Introduction to the Primates, Vol 1. Chicago University Press, ChicagoGoogle Scholar
  21. Horovitz I, Meyer A (1997) Evolutionary trends in the ecology of New World monkeys inferred from a combined phylogenetic analysis of nuclear, mitochondrial, and morphological data. In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, pp 189–224Google Scholar
  22. Jungers WL (1985) Body size and scaling of limb proportions in primates. In: Jungers WL (ed) Size and scaling in primate biology. Plenum, New York, pp 345–381Google Scholar
  23. Kinzey WG, Rosenberger AL, Ramirez M (1975) Vertical clinging and leaping in a neotropical primate. Nature 255:327–328CrossRefPubMedGoogle Scholar
  24. Lacher T, Bouchardet G, Alves C, Magalhaes-Castro B (1984) Parasitism of trees by marmosets in a central Brazilian gallery forest. Biotropica 16:128–129CrossRefGoogle Scholar
  25. Pastorini J, Forstner MRJ, Martin RD, Melnick DJ (1998) A reexamination of the phylogenetic position of Callimico (Primates): incorporation of new mitochondrial DNA sequence data. J Mol Evol 47:32–41CrossRefPubMedGoogle Scholar
  26. Porter LM (2000) The behavior and ecology of the Goeldi’s monkey (Callimico goeldii) in northern Bolivia. PhD Thesis, State University of New York at Stony Brook, NYGoogle Scholar
  27. Porter LM, Garber PA (2004) Goeldi’s monkeys: a primate paradox? Evol Anthropol 13:104–115CrossRefGoogle Scholar
  28. Ramirez MF, Freese CH, Revilla CJ (1978) Feeding ecology of the pygmy marmoset, Cebuella pygmaea, in northeastern Peru. In: Kleiman DG (ed) The biology and conservation of the Callitrichidae. Smithsonian Institution Press, Washington DC, pp 91–104Google Scholar
  29. Rylands AB, Schneider H, Langguth A, Mittermeier RA, Groves CP, Rodriguez-Luna E (2000) An assessment of the diversity of New World primates. Neotrop Primates 8:61–93Google Scholar
  30. Rylands AB, Mittermeier RA, Coimbra-Filho AF (this volume) The systematics and distribution of the marmosets (Callithrix, Callibella, Cebuella, and Mico) and Callimico (Callimico) (Callitrichidae, Primates). In: Ford SM, Porter LM, Davis LC (eds) The smallest anthropoids: The marmoset/callimico radiation. Springer Press, New York, pp 25–61Google Scholar
  31. Singer SS, Schmitz J, Schwiegk C, Zischler H (2003) Molecular cladistic markers in New World monkey phylogeny (Platyrrhini, Primates). Mol Phylogenet Evol 26:490–501CrossRefPubMedGoogle Scholar
  32. Soini P (1988) The pygmy marmosets, genus Cebuella. In: Mittermeier RA, Rylands AB, Coimbra-Filho AF, da Fonseca GA (eds) Ecology and behavior of Neotropical primates, vol 2. World Wildlife Fund, Washington DC, pp 79–129Google Scholar
  33. StatSoft Inc (2000) STATISTICA for Windows [Computer program manual]. Tulsa, OKGoogle Scholar
  34. Stevenson MF, Rylands AB (1988) The marmosets, genus Callithrix. In: Mittermeier RA, Rylands AB, Coimbra-Filho AF, da Fonseca GA (eds) Ecology and behavior of Neotropical primates, vol 2. World Wildlife Fund, Washington DC, pp 131–222Google Scholar
  35. Terranova CJ (1996) Variation in the leaping of lemurs. Am J Primatol 40:145–165CrossRefGoogle Scholar
  36. Walker SE (1993) Positional adaptations and ecology of the Pitheciini. PhD Thesis, City University of New YorkGoogle Scholar
  37. Warren RD, Crompton RH (1998a) Diet, body size, and energy costs of locomotion in saltatory primates. Folia Primatol 69:86–100CrossRefGoogle Scholar
  38. Warren RD, Crompton RH (1998b) Locomotor ecology of Lepilemur edwardsi and Avahi occidentalis. Am J Phys Anthropol 104:471–486CrossRefGoogle Scholar
  39. Youlatos D (1999) Positional behavior of Cebuella pygmaea in Yasuní National Park, Ecuador. Primates 40:543–550CrossRefGoogle Scholar
  40. Youlatos D (2005) Locomotion, postures, and habitat use by pygmy marmosets (Cebuella pygmaea). Am J Phys Anthropol 40:228Google Scholar
  41. Youlatos D (this volume) Locomotion, postures, and habitat use by pygmy marmosets (Cebuella pygmaea). In: Ford SM, Porter LM, Davis LC (eds) The smallest anthropoids: The marmoset/callimico radiation. Springer Press, New York, pp 279–297Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Paul A. Garber
    • 1
  • Ana Sallenave
  • Gregory E. Blomquist
  • Gustl Anzenberger
  1. 1.Department of AnthropologyUniversity of IllinoisUrbanaUSA

Personalised recommendations