Social and Physical Cognition in Marmosets and Tamarins

Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


In this paper, we summarize and discuss recent research on the cognitive abilities of marmosets and tamarins, and compare its results with findings from other primates. The focus animal in this chapter will be the common marmoset (Callithrix jacchus), which we have studied extensively in our lab in Vienna. We present accumulated evidence for callitrichids being likely to: (1) locate food by using some sort of cognitive map, (2) represent objects and their movements in an abstract manner, (3) benefit from social influences that aid in learning about new food by motivational and perceptual factors, and (4) learn new foraging techniques imitatively by observing skillful conspecifics. Together, these findings provide evidence for quite a surprising level of understanding of the physical and social world of these monkeys and shake the long-held belief that callitrichids have low intelligence. These new insights suggest a reevaluation of the traditional monkey-to-ape shift in primate cognition.


Social Learning World Monkey Common Marmoset Food Transfer Object Permanence 


En el presente estudio, resumimos y discutimos investigación reciente sobre las habilidades cognitivas de marmosetas y tamarinos y comparamos sus res­ultados con hallazgos en otros primates. El animal foco de atención en el presente estudio es la marmoseta común (Callithrix jacchus), el cual hemos estudiado extensivamente en nuestro laboratorio en Viena. Presentamos evidencia acumulada de sugiere que los calitrícidos: (1) localizan el alimento usando algún tipo de mapa cognitivo, (2) representan objetos y sus movimientos de una manera abstracta, (3) se benefician de influencias sociales que ayudan en el aprendizaje sobre nuevos alimentos por factores motivacionales y de percepción y (4) aprenden nuevas técnicas de forrajeo por imitación, observando conespecíficos habilidosos. Juntos, estos hallazgos proveen evidencia de un nivel de entendimiento bastante sorprendente del mundo físico y social en estos monos, y debilita la creencia de que los calitrícidos poseen una inteligencia baja. Estos nuevos elementos sugieren una reevaluación del cambio tradicional de mono a simio en la cognición en primates.


Neste estudo nós resumimos e discutimos pesquisas recentes sobre as habilidades cognitivas de sagüis e micos e comparamos os resultados com achados de outros primatas. O animal foco deste capítulo é o sagüi comum, Callithrix jacchus o qual vem sendo estudado extensivamente no nosso Laboratório em Viena. Nós apresentamos dados cumulativos para calitriquídeos que se mostraram aptos para: (1) localizar comida usando algum tipo de mapa cognitivo, (2) representar objetos e seus movimentos de maneira abstrata, (3) se beneficiar de influências sociais que ajudam no aprendizado sobre novos tipos de alimentos por meio de fatores motivacionais e perceptuais e (4) aprender novas técnicas de forrageio por meio da imitação, observando as habilidades de co-específicos. Juntos, estes resultados fornecem evidências sobre os níveis surpreendentes de compreensão do mundo físico e social nestes macacos e questiona as crenças de que os calitriquídeos possuem baixa inteligência. Estas novas evidências sugerem uma re-avaliação do tradicional desvio na passagem macacos-para-pongídeos na cognição de primatas.


  1. Moura ACdA, Lee PC (2004) Capuchin stone tool use in Caatinga dry forest. Science 306:1909CrossRefPubMedGoogle Scholar
  2. Barnard CJ, Sibly RM (1981) Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim Behav 29:543–550CrossRefGoogle Scholar
  3. Brown K, Mack DS (1978) Food sharing among captive Leontopithecus rosalia. Folia Primatol 29:268–290CrossRefPubMedGoogle Scholar
  4. Brown GR, Almond REA, van Bergen Y (2004) Begging, stealing and offering: food transfer in nonhuman primates. Adv Stud Behav 34:265–295CrossRefGoogle Scholar
  5. Brown GR, Almond REA, Bates NJ (2005) Adult–infant food transfer in common marmosets: an experimental study. Am J Primatol 65:301–312CrossRefPubMedGoogle Scholar
  6. Bugnyar T, Huber L (1997) Push or pull: an experimental study on imitation in marmosets (Callithrix jacchus). Anim Behav 54:817–831CrossRefPubMedGoogle Scholar
  7. Byrne RW (1997) The technical intelligence hypothesis: an additional evolutionary stimulus to intelligence? In: Whiten A, Byrne RW (eds) Machiavellian intelligence II: extensions and evaluations. Cambridge University Press, Cambridge, pp 289–311CrossRefGoogle Scholar
  8. Byrne RW (2000) Evolution of primate cognition. Cogn Sci 24:543–570CrossRefGoogle Scholar
  9. Byrne RW, Whiten A (1988) Machiavellian intelligence. Social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford University Press, New YorkGoogle Scholar
  10. Caldwell C, Whiten A (2003) Scrounging facilitates social learning in common marmosets, Callithrix jacchus. Anim Behav 65:1085–1092CrossRefGoogle Scholar
  11. Caldwell CA, Whiten A (2004) Testing for social learning and imitation in common marmosets, Callithrix jacchus, using an artificial fruit. Anim Cogn 7:77–85CrossRefPubMedGoogle Scholar
  12. Caldwell CA, Whiten A, Morris KD (1999) Observational learning in marmoset monkey (Callithrix jacchus). AISB convention: symposium on imitation in animals and artifacts. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour, Edinburgh, pp 27–31Google Scholar
  13. Cheney DL, Seyfarth RM (1990) How monkeys see the world. University of Chicago Press, ChicagoGoogle Scholar
  14. Clutton-Brock T (ed) (1977) Primate ecology: studies of feeding and ranging behaviour in lemurs, monkeys and apes. Academic, LondonGoogle Scholar
  15. de Blois ST, Novak MA, Bond M (1998) Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). J Comp Psychol 112:137–152CrossRefPubMedGoogle Scholar
  16. Doré FY, Dumas C (1987) Psychology of animal cognition: Piagetian studies. Psychol Bull 102:219–233CrossRefGoogle Scholar
  17. Dumas C, Brunet C (1994) Permanence de l’objet chez le singe capucin (Cebus apella): Etude des déplacements invisibles. Rev Can Psychol Exp 48:341–357Google Scholar
  18. Feistner ATC, Price EC (1991) Food offering in new world primates: two species added. Folia Primatol 57:165–168CrossRefGoogle Scholar
  19. Ferrari SF (1987) Food transfer in a wild marmoset group. Folia Primatol 48:203–206CrossRefPubMedGoogle Scholar
  20. Ferrari PF, Gallese V, Rizzolatti G, Fogassi L (2003) Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur J Neurosci 17:1703–14CrossRefPubMedGoogle Scholar
  21. Fleagle JG (1999) Primate ecology and evolution. Academic, New YorkGoogle Scholar
  22. Fragaszy DM, Izar P, Visalberghi E, Ottoni EB, De Oliveira MG (2004a) Wild capuchin monkeys (Cebus libidinosus) use anvils and stone pounding tools. Am J Primatol 64:359–366CrossRefPubMedGoogle Scholar
  23. Fragaszy DM, Visalberghi E, Fedigan LM (2004b) The complete capuchin: the biology of the Genus Cebus. Cambridge University Press, CambridgeGoogle Scholar
  24. Garber P (1989) Role of spatial memory in primate foraging patterns: Saguinus mystax and Saguinus fuscicollis. Am J Primatol 19:203–216CrossRefGoogle Scholar
  25. Garber P, Hannon P (1993) Modeling monkeys: a comparison of computer-generated and naturally occurring foraging patterns in two species of Neotropical primates. Int J Primatol 14:827–852CrossRefGoogle Scholar
  26. Goldizen AW (1987) Tamarins and marmosets: communal care of offspring. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. The University of Chicago Press, Chicago/London, pp 34–43Google Scholar
  27. Gomez JC (2004) Apes, monkeys, children, and the growth of mind. Harvard University Press, Cambridge, MAGoogle Scholar
  28. Hauser MD, Williams T, Kralik JD, Moskovitz D (2001) What guides a search for food that has disappeared? Experiments on cotton-top tamarins (Saguinus oedipus). J Comp Psychol 115:140–151CrossRefPubMedGoogle Scholar
  29. Hershkovitz P (1977) Living New World monkeys (Platyrrhini), with an introduction to primates, vol 1. Chicago University Press, ChicagoGoogle Scholar
  30. Heyes CM, Ray ED (2000) What is the significance of imitation in animals? Adv Stud Behav 29:215–245CrossRefGoogle Scholar
  31. Huber L (1998) Movement imitation as faithful copying in the absence of insight. Behav Brain Sci 22:694CrossRefGoogle Scholar
  32. Huber L, Rechberger S, Taborsky M (2001) Social learning affects object exploration and manipulation in keas, Nestor notabilis. Anim Behav 62:945–954CrossRefGoogle Scholar
  33. Humphrey NK (1976) The social function of intellect. In: Bateson PPG, Hinde RA (eds) Growing points in ethology. Cambridge University Press, Cambridge, pp 303–317Google Scholar
  34. Jolly A (1966) Lemur social behavior and primate intelligence. Science 153:501–506CrossRefPubMedGoogle Scholar
  35. King BJ (1994) The information continuum: evolution of social information transfer in monkeys, apes, and hominids. School of American Research Press, Santa FeGoogle Scholar
  36. Kummer H (1968) Social organization of hamadryas baboons. University of Chicago Press, ChicagoGoogle Scholar
  37. Martin R (1992) Patterns of primate evolution: classification and evolutionary relationship. In: Jones S, Martin R, Pilbeam D (eds) The Cambridge encyclopedia of human evolution. Cambridge University Press, Cambridge, pp 17–23Google Scholar
  38. Mathieu M, Bouchard MA, Granger L, Herscovitch J (1976) Piagetian object-permanence in Cebus capucinus, Lagothrica flavicauda and Pan troglodytes. Anim Behav 24:585–588CrossRefGoogle Scholar
  39. McGrew WC (1992) Chimpanzee material culture. Implications for human evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Mendes N, Huber L (2004) Object permanence in common marmosets (Callithrix jacchus). J Comp Psychol 118:103–112CrossRefPubMedGoogle Scholar
  41. Menzel EW, Juno C (1982) Marmosets (Saguinus fuscicollis): are learning sets learned? Science 217:750–752CrossRefPubMedGoogle Scholar
  42. Menzel EW, Menzel CR (1979) Cognitive, developmental and social aspects of responsiveness to novel objects in a family group of marmosets (Saguinus fuscicollis). Behaviour 70:250–279CrossRefGoogle Scholar
  43. Milton K (1981) Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. Am Anthropol 83:534–548CrossRefGoogle Scholar
  44. Parker ST (1990) Origins of comparative developmental evolutionary studies of primate mental abilities. In: Parker ST, Gibson KR (eds) “Language” and intelligence in monkeys and apes: comparative developmental perspectives. Cambridge University Press, Cambridge, pp 3–64CrossRefGoogle Scholar
  45. Parker ST, Gibson KR (1977) Object manipulation, tool use, and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes. J Hum Evol 6:623–641CrossRefGoogle Scholar
  46. Parker ST, McKinney ML (1999) Origins of intelligence. The evolution of cognitive development in monkeys, apes, and humans. The Johns Hopkins University Press, Baltimore/LondonGoogle Scholar
  47. Passingham R (1982) The human primate. W. H. Freeman, San FranciscoGoogle Scholar
  48. Paukner A, Anderson JR, Borelli E, Visalberghi E, Ferrari PF (2005) Macaques (Macaca nemestrina) recognize when they are being imitated. Biol Lett 1:219–222CrossRefPubMedGoogle Scholar
  49. Piaget J (1937) La construction du réel chez l’enfant (The construction of the real in the child). Delachaux and Niestle, OxfordGoogle Scholar
  50. Praschberger MC (2001) Aufmerksamkeitserhöhung und Stimmungsübertragung bei Weißbüs­chela­ffen (Stimulus enhancement and social facilitation in common marmosets). University of Vienna, ViennaGoogle Scholar
  51. Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci U S A 99:4436–4441CrossRefPubMedGoogle Scholar
  52. Reader SM, MacDonald K (2003) Environmental variability and primate behavioural flexibility. In: Reader SM, Laland KN (eds) Animal innovation. Oxford University Press, Oxford, pp 83–116Google Scholar
  53. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci 27:169–92CrossRefPubMedGoogle Scholar
  54. Ruiz-Miranda CR, Kleiman DG, Dietz JM, Moraes E, Grativol AD, Baker AJ, Beck BB (1999) Food transfer in wild and reintroduced golden lion tamarins, Leontopithecus rosalia. Am J Primatol 48:305–320CrossRefPubMedGoogle Scholar
  55. Santos LR, Ericson B, Hauser MD (1999) Constraints on problem solving and inhibition: object retrieval in cotton-top tamarins. J Comp Psychol 113:186–193CrossRefGoogle Scholar
  56. Schiel N, Huber L (2006) Social influences on the development of foraging behavior in free-living common marmosets (Callithrix jacchus). Am J Primatol 68:1–11CrossRefGoogle Scholar
  57. Schino G, Spinozzi G, Berlinguer L (1990) Object concept and mental representation in Cebus apella and Macaca fasciularis. Primates 31:537–544CrossRefGoogle Scholar
  58. Seyfarth RM, Cheney DL, Marler P (1980) Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science 210:801–803CrossRefPubMedGoogle Scholar
  59. Snowdon CT (2001) Social processes in communication and cognition in callitrichid monkeys: a review. Anim Cogn 4:247–257CrossRefGoogle Scholar
  60. Snyder DR, Birchette LM, Achenbach TM (1978) A comparison of developmentally progressive intellectual skills between Hylobates lar, Cebus apella and Macaca mulatta. In: Chivers DJ, Herbert J (eds) Recent advances in primatology, vol 3. Academic, New York, pp 945–948Google Scholar
  61. Spaulding B, Hauser MD (2005) What experience is required for acquiring tool competence? Experiments with two callitrichids. Anim Behav 70:517–526CrossRefGoogle Scholar
  62. Spinozzi G (1989) Early sensoriomotor development in Cebus (Cebus apella). In: Antinucci F (ed) Cognitive structure and development in nonhuman primates. Lawrence Erlbaum Associates, Hilldsale, NJ, pp 55–66Google Scholar
  63. Thorpe WH (1956) Learning and instinct in animals. Methuen, LondonGoogle Scholar
  64. Tomasello M (2000) Primate cognition: introduction to the issue. Cogn Sci 24:351–361CrossRefGoogle Scholar
  65. Tomasello M, Call J (1997) Primate cognition. Oxford University Press, New YorkGoogle Scholar
  66. Tomasello M, Kruger AC, Ratner HH (1993) Cultural learning. Behav Brain Sci 16:495–552CrossRefGoogle Scholar
  67. van Schaik CP (2004) Among orangutans: red apes and the rise of human culture. Belknap/Harvard University Press, BostonGoogle Scholar
  68. Vaughter RM, Smotherman W, Ordy JM (1972) Development of object permanence in the infant squirrel monkey. Dev Psychol 7:34–38CrossRefGoogle Scholar
  69. Visalberghi E, Fragaszy DM (2002) “Do monkeys ape?” Ten years after. In: Dautenhahn K, Nehaniv CL (eds) Imitation in animals and artifacts. MIT Press, Cambridge, MA, pp 471–499Google Scholar
  70. Vitale A, Queyras A (1997) The response to novel foods in common marmoset (Callithrix jacchus): the effects of different social contexts. Ethology 103:395–403CrossRefGoogle Scholar
  71. Voelkl B, Huber L (2000) True imitation in marmosets. Anim Behav 60:195–202CrossRefPubMedGoogle Scholar
  72. Voelkl B, Schrauf C, Huber L (2006) Social contact influences the response towards novel food in infant marmosets. Anim Behav 72:365–372CrossRefGoogle Scholar
  73. Whiten A, Ham R (1992) On the nature and evolution of imitation in the animal kingdom: reappraisal of a century of research. In: Slater PJB, Rosenblatt JS, Beer C, Milkinski M (eds) Advances in the study of behavior, vol 21. Academic, New York, pp 239–283Google Scholar
  74. Whiten A, Custance DM, Gomez J-C, Teixidor P, Bard KA (1996) Imitative learning of artificial fruit processing in children (Homo sapiens) and chimpanzees (Pan troglodytes). J Comp Psychol 110:3–14CrossRefPubMedGoogle Scholar
  75. Whiten A, Horner V, Marshall-Pescini S (2003) Cultural panthrology. Evol Anthropol 12:92–105CrossRefGoogle Scholar
  76. Whiten A, Horner V, Litchfield CA, Marshall-Pescini S (2004) How do apes ape? Learn Behav 32:36–52PubMedGoogle Scholar
  77. Yamamoto ME, Lopes FdA (2004) Effect of removal from the family group on feeding behavior by captive Callithrix jacchus. Int J Primatol 25:489–500CrossRefGoogle Scholar
  78. Zajonc RB (1965) Social facilitation. Science 149:269–274CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department for Behavior, Neurobiology and CognitionUniversity of ViennaViennaAustria

Personalised recommendations