Advertisement

Surgical Management of Primary Osteosarcoma

  • Alan W. Yasko
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 152)

Abstract

Surgical strategies for the primary tumor for patients with extremity and pelvis osteosarcoma have evolved from the ablative to limb-sparing approaches over the past three decades. Favorable oncologic and functional outcomes with contemporary tissue-conserving techniques consistently observed in skeletally mature patients have prompted the application of similar approaches to a growing number of eligible skeletally immature patients.

In response to emerging long-term outcome data, current strategies have focused principally on refining the nature and scope of surgical resection to preserve uninvolved tissues, and on the adoption of novel biological and nonbiological skeletal and soft-tissue reconstruction methods to optimize function.

We focus on these clinical issues and discuss current efforts to advance the surgical management of the primary tumor and address the limitations of the definitive treatment of the primary tumor, including locally recurrent disease and complications of skeletal reconstructions.

Keywords

Local Tumor Recurrence Orthopedic Oncologist Osteoarticular Allograft Vascularized Fibula Graft Wide Surgical Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bacci G, et al. Influence of local recurrence on survival in patients with extremity osteosarcoma treated with neoadjuvant chemotherapy: the experience of a single institution with 44 patients. Cancer. 2006;106(12):2701-2706.CrossRefPubMedGoogle Scholar
  2. 2.
    Mankin HJ, Mankin CJ, Simon MA. The hazards of the biopsy, revisited. Members of the musculoskeletal tumor society. J Bone Joint Surg Am. 1996;78(5):656-663.PubMedGoogle Scholar
  3. 3.
    Iemsawatdikul K, et al. Seeding of osteosarcoma in the biopsy tract of a patient with multifocal osteosarcoma. Pediatr Radiol. 2005;35(7):717-721.CrossRefPubMedGoogle Scholar
  4. 4.
    White VA, et al. Osteosarcoma and the role of fine-needle aspiration: a study of 51 cases. Cancer. 1988;62(6):1238-1246.CrossRefPubMedGoogle Scholar
  5. 5.
    Ahrar K, et al. Percutaneous ultrasound-guided biopsy in the definitive diagnosis of osteosarcoma. J Vasc Interv Radiol. 2004;15(11):1329-1333.PubMedGoogle Scholar
  6. 6.
    Puri A, et al. CT-guided percutaneous core needle biopsy in deep seated musculoskeletal lesions: a prospective study of 128 cases. Skeletal Radiol. 2006;35(3):138-143.CrossRefPubMedGoogle Scholar
  7. 7.
    Kilpatrick SE, et al. The role of fine needle aspiration biopsy in the diagnosis and management of osteosarcoma. Pediatr Pathol Mol Med. 2001;20(3):175-187.PubMedGoogle Scholar
  8. 8.
    Dodd LG, et al. Utility of fine-needle aspiration in the diagnosis of primary osteosarcoma. Diagn Cytopathol. 2002;27(6):350-353.CrossRefPubMedGoogle Scholar
  9. 9.
    Domanski HA, Akerman M. Fine-needle aspiration of primary osteosarcoma: a cytological-histological study. Diagn Cytopathol. 2005;32(5):269-275.CrossRefPubMedGoogle Scholar
  10. 10.
    Jelinek JS, et al. Diagnosis of primary bone tumors with image-guided percutaneous biopsy: experience with 110 tumors. Radiology. 2002;223(3):731-737.CrossRefPubMedGoogle Scholar
  11. 11.
    Mitsuyoshi G, et al. Accurate diagnosis of musculoskeletal lesions by core needle biopsy. J Surg Oncol. 2006;94(1):21-27.CrossRefPubMedGoogle Scholar
  12. 12.
    Carrino JA, et al. Magnetic resonance imaging-guided percutaneous biopsy of musculoskeletal lesions. J Bone Joint Surg Am. 2007;89(10):2179-2187.CrossRefPubMedGoogle Scholar
  13. 13.
    Adams SC, et al. Consequences and prevention of inadvertent internal fixation of primary osseous sarcomas. Clin Orthop Relat Res. 2008;467:519-525.CrossRefPubMedGoogle Scholar
  14. 14.
    Bacci G, et al. Predictive factors for local recurrence in osteosarcoma: 540 patients with extremity tumors followed for minimum 2.5 years after neoadjuvant chemotherapy. Acta Orthop Scand. 1998;69(3):230-236.CrossRefPubMedGoogle Scholar
  15. 15.
    Bramer JA, et al. Do pathological fractures influence survival and local recurrence rate in bony sarcomas? Eur J Cancer. 2007;43(13):1944-1951.CrossRefPubMedGoogle Scholar
  16. 16.
    Scully SP, et al. Pathologic fracture in osteosarcoma: prognostic importance and treatment implications. J Bone Joint Surg Am. 2002;84-A(1):49-57.PubMedGoogle Scholar
  17. 17.
    Bacci G, et al. Nonmetastatic osteosarcoma of the extremity with pathologic fracture at presentation: local and systemic control by amputation or limb salvage after preoperative chemotherapy. Acta Orthop Scand. 2003;74(4):449-454.CrossRefPubMedGoogle Scholar
  18. 18.
    van Kampen M, et al. Replacement of the hip in children with a tumor in the proximal part of the femur. J Bone Joint Surg Am. 2008;90(4):785-795.CrossRefPubMedGoogle Scholar
  19. 19.
    Frink SJ, et al. Favorable long-term results of prosthetic arthroplasty of the knee for distal femur neoplasms. Clin Orthop Relat Res. 2005;438:65-70.CrossRefPubMedGoogle Scholar
  20. 20.
    Belthur MV, et al. Extensible endoprostheses for bone tumors of the proximal femur in children. J Pediatr Orthop. 2003;23(2):230-235.CrossRefPubMedGoogle Scholar
  21. 21.
    Gupta A, et al. Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours. J Bone Joint Surg Br. 2006;88(5):649-654.CrossRefPubMedGoogle Scholar
  22. 22.
    Gupta A, et al. A knee-sparing distal femoral endoprosthesis using hydroxyapatite-coated extracortical plates. Preliminary results. J Bone Joint Surg Br. 2006;88(10):1367-1372.CrossRefPubMedGoogle Scholar
  23. 23.
    Jeys LM, et al. Endoprosthetic reconstruction for the treatment of musculoskeletal tumors of the appendicular skeleton and pelvis. J Bone Joint Surg Am. 2008;90(6):1265-1271.CrossRefPubMedGoogle Scholar
  24. 24.
    Weber KL, Lin PP, Yasko AW. Complex segmental elbow reconstruction after tumor resection. Clin Orthop Relat Res. 2003;415:31-44.CrossRefPubMedGoogle Scholar
  25. 25.
    Biau D, et al. Survival of total knee replacement with a megaprosthesis after bone tumor resection. J Bone Joint Surg Am. 2006;88(6):1285-1293.CrossRefPubMedGoogle Scholar
  26. 26.
    Myers GJ, et al. The long-term results of endoprosthetic replacement of the proximal tibia for bone tumours. J Bone Joint Surg Br. 2007;89(12):1632-1637.CrossRefPubMedGoogle Scholar
  27. 27.
    Myers GJ, et al. Endoprosthetic replacement of the distal femur for bone tumours: long-term results. J Bone Joint Surg Br. 2007;89(4):521-526.CrossRefPubMedGoogle Scholar
  28. 28.
    Chen, C.M., et al., Reconstruction of extremity long bone defects after sarcoma resection with vascularized fibula flaps: a 10-year review. Plast Reconstr Surg. 2007;119(3):915-924; discussion 925-926.Google Scholar
  29. 29.
    Friedrich JB, et al. Free vascularized fibular graft salvage of complications of long-bone allograft after tumor reconstruction. J Bone Joint Surg Am. 2008;90(1):93-100.CrossRefPubMedGoogle Scholar
  30. 30.
    Moran SL, Shin AY, Bishop AT. The use of massive bone allograft with intramedullary free fibular flap for limb salvage in a pediatric and adolescent population. Plast Reconstr Surg. 2006;118(2):413-419.CrossRefPubMedGoogle Scholar
  31. 31.
    Zaretski A, et al. Free fibula long bone reconstruction in orthopedic oncology: a surgical algorithm for reconstructive options. Plast Reconstr Surg. 2004;113(7):1989-2000.PubMedGoogle Scholar
  32. 32.
    Bae DS, Waters PM, Gebhardt MC. Results of free vascularized fibula grafting for allograft nonunion after limb salvage surgery for malignant bone tumors. J Pediatr Orthop. 2006;26(6):809-814.PubMedGoogle Scholar
  33. 33.
    Alman BA, De Bari A, Krajbich JI. Massive allografts in the treatment of osteosarcoma and Ewing sarcoma in children and adolescents. J Bone Joint Surg Am. 1995;77(1):54-64.PubMedGoogle Scholar
  34. 34.
    Brigman BE, et al. Allografts about the knee in young patients with high-grade sarcoma. Clin Orthop Relat Res. 2004;421:232-239.CrossRefPubMedGoogle Scholar
  35. 35.
    Kohler R, et al. Massive bone allografts in children. Int Orthop. 1990;14(3):249-253.CrossRefPubMedGoogle Scholar
  36. 36.
    Muscolo DL, et al. Intercalary femur and tibia segmental allografts provide an acceptable alternative in reconstructing tumor resections. Clin Orthop Relat Res. 2004;426:97-102.CrossRefPubMedGoogle Scholar
  37. 37.
    Muscolo DL, et al. Partial epiphyseal preservation and intercalary allograft reconstruction in high-grade metaphyseal osteosarcoma of the knee. J Bone Joint Surg Am. 2004;86-A(12):2686-2693.PubMedGoogle Scholar
  38. 38.
    Deijkers RL, et al. Epidiaphyseal versus other intercalary allografts for tumors of the lower limb. Clin Orthop Relat Res. 2005;439:151-160.CrossRefPubMedGoogle Scholar
  39. 39.
    Manfrini M, et al. Intraepiphyseal resection of the proximal tibia and its impact on lower limb growth. Clin Orthop Relat Res. 1999;358:111-119.CrossRefPubMedGoogle Scholar
  40. 40.
    Muscolo DL, et al. Allograft reconstruction after sarcoma resection in children younger than 10 years old. Clin Orthop Relat Res. 2008;466(8):1856-1862.CrossRefPubMedGoogle Scholar
  41. 41.
    Ramseier LE, et al. Allograft reconstruction for bone sarcoma of the tibia in the growing child. J Bone Joint Surg Br. 2006;88(1):95-99.CrossRefPubMedGoogle Scholar
  42. 42.
    Chang DW, Weber KL. Use of a vascularized fibula bone flap and intercalary allograft for diaphyseal reconstruction after resection of primary extremity bone sarcomas. Plast Reconstr Surg. 2005;116(7):1918-1925.CrossRefPubMedGoogle Scholar
  43. 43.
    Farid Y, et al. Endoprosthetic and allograft-prosthetic composite reconstruction of the proximal femur for bone neoplasms. Clin Orthop Relat Res. 2006;442:223-229.CrossRefPubMedGoogle Scholar
  44. 44.
    Biau DJ, et al. Allograft-prosthesis composites after bone tumor resection at the proximal tibia. Clin Orthop Relat Res. 2007;456:211-217.CrossRefPubMedGoogle Scholar
  45. 45.
    Erler K, et al. Reconstruction of defects following bone tumor resections by distraction osteogenesis. Arch Orthop Trauma Surg. 2005;125(3):177-183.CrossRefPubMedGoogle Scholar
  46. 46.
    Dragan S, et al. The application of Ilizarov’s “bone segment transport” method in the treatment of tumors and tumor-like changes in bone. Ortop Traumatol Rehabil. 2002;4(4):441-451.PubMedGoogle Scholar
  47. 47.
    Catagani MA, Ottaviani G. Ilizarov method to correct limb length discrepancy after limb-sparing hemipelvectomy. J Pediatr Orthop B. 2008;17(6):293-298.PubMedGoogle Scholar
  48. 48.
    Ozaki T, Hillmann A, Winkelmann W. Treatment outcome of pelvic sarcomas in young children: orthopaedic and oncologic analysis. J Pediatr Orthop. 1998;18(3):350-355.CrossRefPubMedGoogle Scholar
  49. 49.
    Canadell J, Forriol F, Cara JA. Removal of metaphyseal bone tumours with preservation of the epiphysis. Physeal distraction before excision. J Bone Joint Surg Br. 1994;76(1):127-132.PubMedGoogle Scholar
  50. 50.
    Tsuchiya H, et al. Osteosarcoma around the knee. Intraepiphyseal excision and biological reconstruction with distraction osteogenesis. J Bone Joint Surg Br. 2002;84(8):1162-1166.CrossRefPubMedGoogle Scholar
  51. 51.
    Fuchs B, et al. Osteosarcoma of the pelvis: outcome analysis of surgical treatment. Clin Orthop Relat Res. 2009;467(2):510-518.Google Scholar
  52. 52.
    Saab R, et al. Osteosarcoma of the pelvis in children and young adults: the St. Jude Children’s Research Hospital experience. Cancer. 2005;103(7):1468-1474.CrossRefPubMedGoogle Scholar
  53. 53.
    Ozaki T, et al. High complication rate of reconstruction using Ilizarov bone transport method in patients with bone sarcomas. Arch Orthop Trauma Surg. 1998;118(3):136-139.CrossRefPubMedGoogle Scholar
  54. 54.
    Kollender Y, et al. Internal hemipelvectomy for bone sarcomas in children and young adults: surgical considerations. Eur J Surg Oncol. 2000;26(4):398-404.CrossRefPubMedGoogle Scholar
  55. 55.
    Hosalkar HS, Dormans JP. Surgical management of pelvic sarcoma in children. J Am Acad Orthop Surg. 2007;15(7):408-424.PubMedGoogle Scholar
  56. 56.
    Hugate R Jr, Sim FH. Pelvic reconstruction techniques. Orthop Clin North Am. 2006;37(1):85-97.CrossRefPubMedGoogle Scholar
  57. 57.
    Boriani S, et al. En bloc resections of bone tumors of the thoracolumbar spine. A preliminary report on 29 patients. Spine. 1996;21(16):1927-1931.CrossRefPubMedGoogle Scholar
  58. 58.
    Liljenqvist U, et al. En bloc spondylectomy in malignant tumors of the spine. Eur Spine J. 2008;17(4):600-609.CrossRefPubMedGoogle Scholar
  59. 59.
    Melcher I, et al. Primary malignant bone tumors and solitary metastases of the thoracolumbar spine: results by management with total en bloc spondylectomy. Eur Spine J. 2007;16(8):1193-1202.CrossRefPubMedGoogle Scholar
  60. 60.
    Agarwal M, et al. Rotationplasty for bone tumors: is there still a role? Clin Orthop Relat Res. 2007;459:76-81.CrossRefPubMedGoogle Scholar
  61. 61.
    Sawamura C, Hornicek FJ, Gebhardt MC. Complications and risk factors for failure of rotationplasty: review of 25 patients. Clin Orthop Relat Res. 2008;466(6):1302-1308.CrossRefPubMedGoogle Scholar
  62. 62.
    Refaat Y, et al. Comparison of quality of life after amputation or limb salvage. Clin Orthop Relat Res. 2002;397:298-305.CrossRefPubMedGoogle Scholar
  63. 63.
    Eiser C, et al. Quality of life implications as a consequence of surgery: limb salvage, primary and secondary amputation. Sarcoma. 2001;5(4):189-195.CrossRefPubMedGoogle Scholar
  64. 64.
    Aksnes LH, et al. Limb-sparing surgery preserves more function than amputation: a Scandinavian sarcoma group study of 118 patients. J Bone Joint Surg Br. 2008;90(6):786-794.CrossRefPubMedGoogle Scholar
  65. 65.
    Ginsberg JP, et al. A comparative analysis of functional outcomes in adolescents and young adults with lower-extremity bone sarcoma. Pediatr Blood Cancer. 2007;49(7):964-969.CrossRefPubMedGoogle Scholar
  66. 66.
    Rodriguez-Galindo C, et al. Outcome after local recurrence of osteosarcoma: the St. Jude Children’s Research Hospital experience (1970–2000). Cancer. 2004;100(9):1928-1935.CrossRefPubMedGoogle Scholar
  67. 67.
    Nathan SS, et al. Treatment algorithm for locally recurrent osteosarcoma based on local disease-free interval and the presence of lung metastasis. Cancer. 2006;107(7):1607-1616.CrossRefPubMedGoogle Scholar
  68. 68.
    Weisstein, J.S., R.E. Goldsby, and R.J. O’Donnell, Oncologic approaches to pediatric limb preservation. J Am Acad Orthop Surg, 2005. 13(8): p. 544–54.CrossRefPubMedGoogle Scholar
  69. 69.
    Neel, M.D., et al., Early multicenter experience with a noninvasive expandable prosthesis. Clin Orthop Relat Res, 2003(415): p. 72–81.CrossRefPubMedGoogle Scholar
  70. 70.
    Futani, H., et al., Long-term follow-up after limb salvage in skeletally immature children with a primary malignant tumor of the distal end of the femur. J Bone Joint Surg Am, 2006. 88(3): p. 595–603.CrossRefPubMedGoogle Scholar
  71. 70.
    Bacci G, et al., Local recurrence and local control of non-metastatic osteosarcoma of the extremities: a 27-year experience in a single institution. J Surg Oncol, 2007. 96(2): p. 118–23.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryNorthwestern University, Feinberg School of Medicine, Orthopaedic OncologyChicagoUSA

Personalised recommendations