Advertisement

Non-Surgical Treatment of Pulmonary and Extra-pulmonary Metastases

Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 152)

Abstract

Studies have demonstrated that chemotherapy alone is usually unsuccessful as exclusive therapy for osteosarcoma (Cancer 95:2202–2201, 2002). Information will be presented for situations where non-surgical alternatives could be considered as useful, if not necessary, adjuncts to chemotherapy. In the thorax these include treatment of pleural effusions, chest wall lesions, central lung or mediastinal osteosarcoma, as well as recurrences in patients with limited pulmonary reserve. Other situations include too many metastases to easily resect, axial osteosarcomas, bone metastases, liver and brain metastases.

Non-surgical local control measures include radiation with chemotherapy for radiosensitization, bone-seeking radioisotopes (e.g., 153Sm-EDTMP, 223Ra), bisphosphonates, heat (radiofrequency ablation), freezing and thawing (cryoablation), and intracavitary or regional (aerosol) therapy. Because of the predictable and common pattern of pulmonary metastases in osteosarcoma, aerosol therapy also offers an attractive regional treatment strategy. Principles and use of aerosol cytokines (e.g., GM-CSF, IL-2), and aerosol chemotherapy with gemcitabin will be discussed. Individual cases illustrating strategy and techniques will be presented.

Keywords

Local Control Thermal Ablation Doxorubicin Liposome Metastatic Osteosarcoma Central Lung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author thanks the many members of the MD Anderson Cancer Center that make multidisciplinary care for metastases possible including Dr. Kamran Ahrar (interventional radiology), Dr. Andrea Hayes-Jordan (Pediatric Surgery), Dr. Ara Vaporciyan (thoracic Surgery), Dr. Rudolfo Nunez (Nuclear Medicine), Dr. Nancy Fitzgerald (Pediatric Radiology), Maritza Salazar-Abshire, RN, Margaret Pearson , CNP, and Kathy Cornelius.

References

  1. 1.
    Jaffe N, Carrasco H, Raymond K, et al. Can cure in patients with osteosarcoma be achieved exclusively with chemotherapy and abrogation of surgery? Cancer. 2002;95:2202-2210.CrossRefPubMedGoogle Scholar
  2. 2.
    Kempf-Bielack B, Bielack SS, Jurgens H, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23:559-568.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson P. Osteosarcoma relapse: expect the worst, but hope for the best. Pediatr Blood Cancer. 2006;47:231-238.CrossRefPubMedGoogle Scholar
  4. 4.
    Charon R. Narrative and medicine. N Engl J Med. 2004;350:862-864.CrossRefPubMedGoogle Scholar
  5. 5.
    Harter LM, Japp PM. Technology as the representative anecdote in popular discourses of health and medicine. Health Commun. 2001;13:409-425.CrossRefPubMedGoogle Scholar
  6. 6.
    Harter LM, Japp PM, Beck CS. Narratives, Health, and Healing. Mahwah, NJ: Lawrence Erlbaum Associates; 2005. 516 pp.Google Scholar
  7. 7.
    Anderson P, Salazar-Abshire M. Improving outcomes in difficult bone cancers using multimodality therapy, including radiation: physician and nursing perspectives. Curr Oncol Rep. 2006;8:415-422.CrossRefPubMedGoogle Scholar
  8. 8.
    Norville D. Thank You Power: Making the Science of Gratitude Work for You. Nashville: Thomas Nelson; 2007.Google Scholar
  9. 9.
    Anderson PM, Pearson M. Novel therapeutic approaches in pediatric and young adult sarcomas. Curr Oncol Rep. 2006;8:310-315.CrossRefPubMedGoogle Scholar
  10. 10.
    Skubitz KM. Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Invest. 2003;21:167-176.CrossRefPubMedGoogle Scholar
  11. 11.
    Wilkins RM, Cullen JW, Odom L, et al. Superior survival in treatment of primary nonmetastatic pediatric osteosarcoma of the extremity. Ann Surg Oncol. 2003;10:498-507.CrossRefPubMedGoogle Scholar
  12. 12.
    Wilkins RM, Cullen JW, Camozzi AB, et al. Improved survival in primary nonmetastatic pediatric osteosarcoma of the extremity. Clin Orthop Relat Res. 2005;438:128-136.CrossRefPubMedGoogle Scholar
  13. 13.
    Anderson P, Kornguth D, Ahrar K, et al. Non-surgical treatments for young people with high-grade sarcoma metastases. Pediatr Health. 2008;2 (in press).Google Scholar
  14. 14.
    Boyer MW, Moertel CL, Priest JR, Woods WG. Use of intracavitary cisplatin for the treatment of childhood solid tumors in the chest or abdominal cavity. J Clin Oncol. 1995;13:631-636.PubMedGoogle Scholar
  15. 15.
    Ferguson WS, Harris MB, Goorin AM, et al. Presurgical window of carboplatin and surgery and multidrug chemotherapy for the treatment of newly diagnosed metastatic or unresectable osteosarcoma: pediatric Oncology Group Trial. J Pediatr Hematol Oncol. 2001;23:340-348.CrossRefPubMedGoogle Scholar
  16. 16.
    Daw NC, Billups CA, Rodriguez-Galindo C, et al. Metastatic osteosarcoma. Cancer. 2006;106:403-412.CrossRefPubMedGoogle Scholar
  17. 17.
    Skubitz KM, Hamdan H, Thompson RC Jr. Ambulatory continuous infusion ifosfamide with oral etoposide in advanced sarcomas. Cancer. 1993;72:2963-2969.CrossRefPubMedGoogle Scholar
  18. 18.
    Anderson P, Aguilera D, Pearson M, Woo S. Outpatient chemotherapy+radiotherapy in sarcomas: improving cancer control with radiosensitizing agents. Cancer Control. 2008;15:38-46.PubMedGoogle Scholar
  19. 19.
    Ferrari A, Grosso F, Stacchiotti S, et al. Response to vinorelbine and low-dose cyclophosphamide chemotherapy in two patients with desmoplastic small round cell tumor. Pediatr Blood Cancer. 2007;49:864-866.CrossRefPubMedGoogle Scholar
  20. 20.
    Casanova M, Ferrari A, Bisogno G, et al. Vinorelbine and low-dose cyclophosphamide in the treatment of pediatric sarcomas: pilot study for the upcoming European Rhabdomyosarcoma Protocol. Cancer. 2004;101:1664-1671.CrossRefPubMedGoogle Scholar
  21. 21.
    Anderson P. Chemotherapy for osteosarcoma with high-dose methotrexate is effective and outpatient therapy is now possible. Nat Clin Pract Oncol. 2007;4:624-625.PubMedGoogle Scholar
  22. 22.
    Leu KM, Ostruszka LJ, Shewach D, et al. Laboratory and clinical evidence of synergistic cytotoxicity of sequential treatment with gemcitabine followed by docetaxel in the treatment of sarcoma. J Clin Oncol. 2004;22:1706-1712.CrossRefPubMedGoogle Scholar
  23. 23.
    Maki RG. Gemcitabine and docetaxel in metastatic sarcoma: past, present, and future. Oncologist. 2007;12:999-1006.CrossRefPubMedGoogle Scholar
  24. 24.
    Reidy DL, Chung KY, Timoney JP, et al. Bevacizumab 5 mg/kg can be infused safely over 10 minutes. J Clin Oncol. 2007;25:2691-2695.CrossRefPubMedGoogle Scholar
  25. 25.
    Anderson PM, Markovic SN, Sloan JA, et al. Aerosol granulocyte macrophage-colony stimulating factor: a low toxicity, lung-specific biological therapy in patients with lung metastases. Clin Cancer Res. 1999;5:2316-2323.PubMedGoogle Scholar
  26. 26.
    Wylam ME, Ten R, Prakash UB, et al. Aerosol granulocyte-macrophage colony-stimulating factor for pulmonary alveolar proteinosis. Eur Respir J. 2006;27:585-593.CrossRefPubMedGoogle Scholar
  27. 27.
    Anderson P. Liposomal muramyl tripeptide phosphatidylehtanolamine (L-MTP-PE):ifosfamide containing chemotherapy in osteosarcoma. Future Oncol. 2006;2 (in press).Google Scholar
  28. 28.
    Meyers PA, Schwartz CL, Krailo MD, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival – a report from the Children’s Oncology Group. J Clin Oncol. 2008;26:633-638.CrossRefPubMedGoogle Scholar
  29. 29.
    Anderson PM, Wiseman GA, Erlandson L, et al. Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clin Cancer Res. 2005;11:6895-6900.CrossRefPubMedGoogle Scholar
  30. 30.
    Anderson PM, Wiseman GA, Dispenzieri A, et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol. 2002;20:189-196.CrossRefPubMedGoogle Scholar
  31. 31.
    Anderson P. Samarium for osteoblastic bone metastases and osteosarcoma. Expert Opin Pharmacother. 2006;7:1475-1486.CrossRefPubMedGoogle Scholar
  32. 32.
    Anderson P, Nunez R. Samarium lexidronam (153Sm-EDTMP): skeletal radiation for osteoblastic bone metastases and osteosarcoma. Expert Rev Anticancer Ther. 2007;7:1517-1527.CrossRefPubMedGoogle Scholar
  33. 33.
    Bruland OS, Skretting A, Solheim OP, Aas M. Targeted radiotherapy of osteosarcoma using 153 Sm-EDTMP. A new promising approach. Acta Oncol. 1996;35:381-384.CrossRefPubMedGoogle Scholar
  34. 34.
    Ory B, Blanchard F, Battaglia S, et al. Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retinoblastoma status. Mol Pharmacol. 2007;71:333-343.CrossRefPubMedGoogle Scholar
  35. 35.
    Gralow J, Tripathy D. Managing metastatic bone pain: the role of bisphosphonates. J Pain Symptom Manage. 2007;33:462-472.CrossRefPubMedGoogle Scholar
  36. 36.
    Russell RG. Bisphosphonates: mode of action and pharmacology. Pediatrics. 2007;119(Suppl 2):S150-S162.CrossRefPubMedGoogle Scholar
  37. 37.
    Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145-147.CrossRefPubMedGoogle Scholar
  38. 38.
    Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6:553-563.PubMedGoogle Scholar
  39. 39.
    Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64:3731-3736.CrossRefPubMedGoogle Scholar
  40. 40.
    Shor AC, Agresta SV, D’Amato GZ, Sondak VK. Therapeutic potential of directed tyrosine kinase inhibitor therapy in sarcomas. Cancer Control. 2008;15:47-54.PubMedGoogle Scholar
  41. 41.
    Gordon N, Koshkina NV, Jia SF, et al. Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res. 2007;13:4503-4510.CrossRefPubMedGoogle Scholar
  42. 42.
    Koshkina NV, Kleinerman ES. Aerosol gemcitabine inhibits the growth of primary osteosarcoma and osteosarcoma lung metastases. Int J Cancer. 2005;116:458-463.CrossRefPubMedGoogle Scholar
  43. 43.
    Khanna C, Helman LJ. Molecular approaches in pediatric oncology. Annu Rev Med. 2006;57:83-97.CrossRefPubMedGoogle Scholar
  44. 44.
    Krishnan K, Khanna C, Helman LJ. The biology of metastases in pediatric sarcomas. Cancer J. 2005;11:306-313.CrossRefPubMedGoogle Scholar
  45. 45.
    Wan X, Mendoza A, Khanna C, Helman LJ. Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res. 2005;65:2406-2411.CrossRefPubMedGoogle Scholar
  46. 46.
    Savage SA, Woodson K, Walk E, et al. Analysis of genes critical for growth regulation identifies insulin-like growth factor 2 receptor variations with possible functional significance as risk factors for osteosarcoma. Cancer Epidemiol Biomarkers Prev. 2007;16:1667-1674.CrossRefPubMedGoogle Scholar
  47. 47.
    Shevah O, Laron Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm IGF Res. 2007;17:54-57.CrossRefPubMedGoogle Scholar
  48. 48.
    Mochizuki S, Yoshida S, Yamanaka Y, et al. Effects of estriol on proliferative activity and expression of insulin-like growth factor-I (IGF-I) and IGF-I receptor mRNA in cultured human osteoblast-like osteosarcoma cells. Gynecol Endocrinol. 2005;20:6-12.CrossRefPubMedGoogle Scholar
  49. 49.
    MacEwen EG, Pastor J, Kutzke J, et al. IGF-1 receptor contributes to the malignant phenotype in human and canine osteosarcoma. J Cell Biochem. 2004;92:77-91.CrossRefPubMedGoogle Scholar
  50. 50.
    Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res. 2006;12:6250s-6257s.CrossRefPubMedGoogle Scholar
  51. 51.
    Lemieux J, Maunsell E, Provencher L. Chemotherapy-induced alopecia and effects on quality of life among women with breast cancer: a literature review. Psychooncology. 2007;17:317-328.Google Scholar
  52. 52.
    Batchelor D. Hair and cancer chemotherapy: consequences and nursing care – a literature study. Eur J Cancer Care (Engl). 2001;10:147-163.CrossRefGoogle Scholar
  53. 53.
    Machak GN, Tkachev SI, Solovyev YN, et al. Neoadjuvant chemotherapy and local radiotherapy for high-grade osteosarcoma of the extremities. Mayo Clin Proc. 2003;78:147-155.CrossRefPubMedGoogle Scholar
  54. 54.
    Anderson PM. Effectiveness of radiotherapy for osteosarcoma that responds to chemotherapy. Mayo Clin Proc. 2003;78:145-146.CrossRefPubMedGoogle Scholar
  55. 55.
    Mahajan A, Woo SY, Kornguth DG, et al. Multimodality treatment of osteosarcoma: radiation in a high-risk cohort. Pediatr Blood Cancer. 2008;50:976-982.CrossRefPubMedGoogle Scholar
  56. 56.
    Dincbas FO, Koca S, Mandel NM, et al. The role of preoperative radiotherapy in nonmetastatic high-grade osteosarcoma of the extremities for limb-sparing surgery. Int J Radiat Oncol Biol Phys. 2005;62:820-828.CrossRefPubMedGoogle Scholar
  57. 57.
    DeLaney TF, Trofimov AV, Engelsman M, Suit HD. Advanced-technology radiation therapy in the management of bone and soft tissue sarcomas. Cancer Control. 2005;12:27-35.PubMedGoogle Scholar
  58. 58.
    DeLaney TF, Park L, Goldberg SI, et al. Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys. 2005;61:492-498.CrossRefPubMedGoogle Scholar
  59. 59.
    Patel S, Delaney TF. Advanced-technology radiation therapy for bone sarcomas. Cancer Control. 2008;15:21-37.PubMedGoogle Scholar
  60. 60.
    Volker T, Denecke T, Steffen I, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25:5435-5441.CrossRefPubMedGoogle Scholar
  61. 61.
    Ahrar K. The role and limitations of radiofrequency ablation in treatment of bone and soft tissue tumors. Curr Oncol Rep. 2004;6:315-320.CrossRefPubMedGoogle Scholar
  62. 62.
    Ahrar K, Wallace MJ, Matin SF. Percutaneous radiofrequency ablation: minimally invasive therapy for renal tumors. Expert Rev Anticancer Ther. 2006;6:1735-1744.CrossRefPubMedGoogle Scholar
  63. 63.
    Allaf ME, Varkarakis IM, Bhayani SB, et al. Pain control requirements for percutaneous ablation of renal tumors: cryoablation versus radiofrequency ablation – initial observations. Radiology. 2005;237:366-370.CrossRefPubMedGoogle Scholar
  64. 64.
    Ahmed A, Littrup P. Percutaneous cryotherapy of the thorax: safety considerations for complex cases. AJR Am J Roentgenol. 2006;186:1703-1706.CrossRefPubMedGoogle Scholar
  65. 65.
    Wang H, Littrup PJ, Duan Y, et al. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology. 2005;235:289-298.CrossRefPubMedGoogle Scholar
  66. 66.
    Simon CJ, Dupuy DE. Percutaneous minimally invasive therapies in the treatment of bone tumors: thermal ablation. Semin Musculoskelet Radiol. 2006;10:137-144.CrossRefPubMedGoogle Scholar
  67. 67.
    Carrafiello G, Lagana D, Ianniello A, et al. Post-radiofrequency ablation syndrome after percutaneous radiofrequency of abdominal tumours: one centre experience and review of published works. Australas Radiol. 2007;51:550-554.CrossRefPubMedGoogle Scholar
  68. 68.
    Ahmed M, Goldberg SN. Combination radiofrequency thermal ablation and adjuvant IV liposomal doxorubicin increases tissue coagulation and intratumoural drug accumulation. Int J Hyperthermia. 2004;20:781-802.CrossRefPubMedGoogle Scholar
  69. 69.
    Goldberg SN, Kamel IR, Kruskal JB, et al. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol. 2002;179:93-101.PubMedGoogle Scholar
  70. 70.
    Goetz MP, Callstrom MR, Charboneau JW, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol. 2004;22:300-306.CrossRefPubMedGoogle Scholar
  71. 71.
    Nguyen CL, Scott WJ, Goldberg M. Radiofrequency ablation of lung malignancies. Ann Thorac Surg. 2006;82:365-371.CrossRefPubMedGoogle Scholar
  72. 72.
    Kybosh M, Yamakado K, Nakatsuka A, et al. Percutaneous radiofrequency ablation of lung neoplasms: initial therapeutic response. J Vasc Interv Radiol. 2004;15:463-470.Google Scholar
  73. 73.
    Suh RD, Wallace AB, Sheehan RE, et al. Unresectable pulmonary malignancies: CT-guided percutaneous radiofrequency ablation – preliminary results. Radiology. 2003;229:821-829.CrossRefPubMedGoogle Scholar
  74. 74.
    Grieco CA, Simon CJ, Mayo-Smith WW, et al. Image-guided percutaneous thermal ablation for the palliative treatment of chest wall masses. Am J Clin Oncol. 2007;30:361-367.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Children’s Cancer Hospital, University of Texas MD Anderson Cancer Center, Unit 87, PediatricsHoustonUSA

Personalised recommendations