Materials and Devices for Nanoelectronic Systems Beyond Ultimately Scaled CMOS

  • Didier Bouvet
  • László Forró
  • Adrian M. Ionescu
  • Yusuf Leblebici
  • Arnaud Magrez
  • Kirsten E. Moselund
  • Giovanni A. Salvatore
  • Nava Setter
  • Igor Stolitchnov


In this chapter, we review some of the most recent results in these areas and put them in a unified context that covers a very wide range, from materials to system design. The first section presents a top-down silicon nanowire fabrication platform for high-mobility gate-all-around (GAA) MOSFETs and impact-ionization devices. Ferroelectric FET with sub-100-nm copolymer P(VDF-TrFE) gate dielectric are examined in the next section for nonvolatile memory applications, which is a very promising direction toward future high-density memory arrays, followed by a discussion of materials for piezoelectric nanodevices in the last section.


Electron Spin Resonance Drain Current SrTiO3 Substrate Mobility Enhancement Silicon Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dennard RH, Cai J, Kumar A (2007) A perspective on today’s scaling challenges and possible future directions. Solid State Electron 51(5):18–25Google Scholar
  2. 2.
    Colinge J-P (1997) Silicon-on-insulator technology: materials to VLSI, 2nd edn. Kluwer, DordrechtGoogle Scholar
  3. 3.
    Moselund KE (2008) Three-dimensional electronic devices fabricated on a top-down silicon nanowire platform. EPFL PhD ThesisGoogle Scholar
  4. 4.
    Moselund KE, Bouvet D, Leblebici Y, Ben Jamaa H, Atienza D, De Micheli G, Ionescu AM (2007) GAA MOSFET for logic on a wire. In: European Nanoday. International nanotechnology conference on communication and cooperation, INC3 2007, Brussels, Belgium, 16–19 April 2007Google Scholar
  5. 5.
    Moselund KE, Pott V, Bouvet D, Ionescu AM (2007) Abrupt current switching due to impact ionization effects in Ω-gate MOSFET on low doped bulk silicon. ESSDERC 2007, Technical Digest, pp 287–290Google Scholar
  6. 6.
    Moselund KE, Bouvet D, Ionescu AM (2007) Prospect for logic-on-a-wire: Ω-gate NMOS inverter fabricated on single Si nanowire. Technical Digest MNE 2007, Copenhagen, 5B-2, pp 123–124Google Scholar
  7. 7.
    Moselund KE, Dobrosz P, Olsen S, Pott V, De Michielis L, Tsamados D, Bouvet D, O’Neill A, Ionescu AM (2007) Bended gate-all-around nanowire MOSFET:a device with enhanced carrier mobility due to oxidation-induced tensile stress. Technical Digest IEDM, pp 191–194Google Scholar
  8. 8.
    Moselund KE, Bouvet D, Ben Jamaa MH, Atienza D, Leblebici Y, De Micheli G, Ionescu AM (2008) Prospects for logic-on-a-wire. Microelectronic Eng (Special Edition) 85:1406–1409Google Scholar
  9. 9.
    Moselund KE, Pott V, Bouvet D, Ionescu AM (2008) Hysteretic inverter-on-a-body-tied-wire based on less-than-10 mV/decade abrupt punch-through impact ionization MOS PIMOS switch. VLSI-TSA, Taiwan, April 2008Google Scholar
  10. 10.
    Moselund KE, Pott V, Meinen C, Bouvet D, Kayal M, Ionescu AM (2008) DRAM based on hysteresis in impact ionization single-transistor-latch. Accepted for presentation at the MRS Spring meeting, San Francisco, March 2008Google Scholar
  11. 11.
    Moselund KE, Bouvet D, Pott V, Meinen C, Kayal M, Ionescu AM (2008) Punch-through impact ionization MOSFET (PIMOS):from device principle to applications. Solid State Electron 52:1336–1344CrossRefGoogle Scholar
  12. 12.
    Gopalakrishnan K, Griffin PB, Plummer JD (2005) Impact ionization MOS (I-MOS) – Part I: Device and circuit simulations. IEEE Trans Electron Devices 52(1):69–76CrossRefGoogle Scholar
  13. 13.
    Furukawa T, Date M, Ohuchi M, Chiba A (1984) Ferroelectric switching characteristics in a copolymer of vinylidene fluoride and trifluorethylene. J Appl Phys 56(5):1481CrossRefGoogle Scholar
  14. 14.
    Lim SH, Rastogi AC, Desu SB (2004) Electrical properties of metal-ferroelectric-insulator-semiconductor structures based on ferroelectric polyvinylidene fluoride copolymer film gate for nonvolatile random access memory application. J Appl Phys 96(10):5673CrossRefGoogle Scholar
  15. 15.
    Gerber A, Kohlstedt H, Fitsilis M, Waser R, Reece TJ, Ducharme S, Rije E (2006) Low-voltage operation of metal-ferroelectric-insulator-semiconductor diodes incorporating a ferroelectric polyvinylidene fluoride copolymer Langmuir-Blodgett film. J Appl Phys 100:024110CrossRefGoogle Scholar
  16. 16.
    Reece TJ, Ducharme S, Sorokin AV, Poulsen M (2003) Nonvolatile memory element based on a ferroelectric polymer Langmuir–Blodgett film. Appl Phys Lett 82:142CrossRefGoogle Scholar
  17. 17.
    Naber RCG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ, Setayesh S, Leeuw DM (2005) High-performance solution-processed polymer ferroelectric field effect transistors. Nat Mater 4(3):243CrossRefGoogle Scholar
  18. 18.
    Sakoda T et al (2001) Hydrogen-robust submicron \({\mathrm{IrO}}_{\mathrm{x}}/\mathrm{Pb}(\mathrm{Zr},\mathrm{Ti}){\mathrm{O}}_{3}/\mathrm{Ir}\) capacitors for embedded ferroelectric memory. Jpn J Appl Phys 40(1):2911CrossRefGoogle Scholar
  19. 19.
    Kinam K, Jung Hyuk C, Jungdal C, Hong-Sik J (2005) The future prospect of nonvolatile memory. 2005 IEEE symposium on VLSI technologyGoogle Scholar
  20. 20.
    A-Paz de Araujo C, Cuchiaro JD, McMillan LD, Scott MC, Scott JF (1995) Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374(6523):627CrossRefGoogle Scholar
  21. 21.
    Nakao K, Judai Y, Azuma M, Shimada Y, Otsuki T (1998) Voltage shift effect on retention failure in ferroelectric memories. Jpn J Appl Phys 37:5203–5206CrossRefGoogle Scholar
  22. 22.
    Fujisaki S, Ishiwara H, Fujisaki Y (2007) Low-voltage operation of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer capacitors and metal-ferroelectric- insulator-semiconductor diodes. Appl Phys Lett 90: 158CrossRefGoogle Scholar
  23. 23.
    Salvatore GA, Bouvet D, Stolitchnov I, Setter N, Ionescu AM (2008) Low voltage ferroelectric FET with sub-100 nm copolymer P(VDF-TrFE) gate dielectric for non-volatile 1T memory. ESSDERC 2008, Edinburgh, Scotland, 15–19 September 2008Google Scholar
  24. 24.
    Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC, Scott JF (1995) Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374(6323):627–629CrossRefGoogle Scholar
  25. 25.
    Alexe M, Harnagea C, Hesse D, Gösele U (2001) Polarization imprint and size effects in mesoscopic ferroelectric structures. Appl Phys Lett 79:242CrossRefGoogle Scholar
  26. 26.
    Stolitchnov I, Colla E, Tagantsev A, Bharadwaja SSN, Hong S, Setter N, Cross JS, Tsukada M (2002) Unusual size effect on the polarization patterns in micron-size Pb(Zr,Ti)O-3 film capacitors. Appl Phys Lett 80(25):4804–4806CrossRefGoogle Scholar
  27. 27.
    Magrez A, Vasco E, Seo JW, Dieker C, Setter N, Forro L (2006).Growth of single-crystalline KNbO3 nanostructures. J Phys Chem 110:58–61 **Google Scholar
  28. 28.
    Vasco E, Magrez A, Forro L, Setter N (2005) Growth kinetics of one-dimensional KNbO3 nanostructures by hydrothermal processing routes. J Phys Chem B 109(30):14331–14334CrossRefGoogle Scholar
  29. 29.
    Magrez A, Seo JW, Dieker C, Forró L Preparation of large scale arrays of oriented KNbO3 nanowires, in preparationGoogle Scholar
  30. 30.
    Wada S, Muraoka K, Kakemoto H, Tsumuri T, Kumagai H (2005) Enhanced piezoelectric properties of potassium niobate single crystals with fine engineered domain configurations. Mater Sci Eng B 120:186–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Didier Bouvet
    • 1
  • László Forró
    • 1
  • Adrian M. Ionescu
    • 1
  • Yusuf Leblebici
    • 1
  • Arnaud Magrez
    • 1
  • Kirsten E. Moselund
    • 1
  • Giovanni A. Salvatore
    • 1
  • Nava Setter
    • 1
  • Igor Stolitchnov
    • 1
  1. 1.Microelectronic Systems LabEPFL – Swiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations