This book addresses the impact of nanotechnologies on the design of electronic systems. We use the term “system” in the broad sense, and thus we consider technologies that range from nanoelectronics to sensing and micro-/nanofluidics and that encompass techniques bridging the gap between engineering and biology. We also use the term nanosystem to indicate that the system embodies nanodevices. As the application space of nanosystems is very vast, we will focus on specific topics that exemplify the challenges and opportunities that nanotechnology brings to the system design table.


CMOS Technology Nonvolatile Memory Technology Node Timing Predictability SiNW Array 


  1. 1.
  2. 2.
    Allen J (1995) Natural language understanding. Benjamin Cummings, San AntonioMATHGoogle Scholar
  3. 3.
    Bake D, Church G, Collins J, Endy D, Jacobson J, Keasling J, Modrich P, Smolke C, Weiss R (2006) Engineering life: building a fab for biology. Sci Am 294(6):44–51CrossRefGoogle Scholar
  4. 4.
    Benini L, De Micheli G (2002) Networks on chip: a new design paradigm. IEEE Comput 35:70–78CrossRefGoogle Scholar
  5. 5.
    Ben Jamaa MH, Moselund KE, Atienza D, Bouvet D, Ionescu MA, Leblebici Y, De Micheli G (2008) Variability-aware design of multilevel logic decoders for nanoscale crossbar memories. IEEE Trans Comput Aided Des Integr Circuits Syst 27(11):2053–2067CrossRefGoogle Scholar
  6. 6.
    Bobba S, Zhang J, Pullini A, Atienza D, Mitra S, De Micheli G (2009) Design of compact imperfection-immune CNFET layouts for standard-cell-based logic synthesis. Design, Automation and Test in Europe, DATE 09, 2009, pp. 616–621Google Scholar
  7. 7.
    Carrara S, Shumyantseva VV, Archakov AI, Samorì B (2008) Screen-printed electrodes based on carbon nanotubes and cytochrome p450scc for highly-sensitive cholesterol biosensors. Biosens Bioelectron 24:148–150CrossRefGoogle Scholar
  8. 8.
    Cerofolini G (2007) Realistic limits to computation II: the technological side. Appl Phys A Mater Sci Process 86(1):31–42Google Scholar
  9. 9.
    Close GF, Wong H-SP (2007) Fabrication and characterization of carbon nanotube interconnects. IEEE International Electron Devices Meeting (IEDM), Washington, DC, 10–12 December 2007, pp 203–206Google Scholar
  10. 10.
    Cox RV, Kamm CA, Rabiner LR, Schroeter J, Wilpon JG (2000) Speech and language processing for next-millennium communications services. Proc IEEE 88(8):1314–1337CrossRefGoogle Scholar
  11. 11.
    de Hon A (2003) Array-based architecture for FET-based nanoscale electronics. IEEE Trans Nanotechnol 2(1):23–32CrossRefGoogle Scholar
  12. 12.
    De Micheli G (1994) Synthesis and Optimization of Digital Circuits. McGraw-Hill, ColumbusGoogle Scholar
  13. 13.
    De Micheli G, Benini L (2006) Networks on Chip. Morgan Kaufmann, San FranciscoGoogle Scholar
  14. 14.
    Demierre N (2008) Continuous-flow separation of cells in a lab-on-a-chip using liquid electrodes and multiple-frequency dielectrophoresis. PhD Thesis, LausanneGoogle Scholar
  15. 15.
    De Risi J, Penland L, Brown P, Bittner M, Meltler P, Ray M, Chen Y, Su Y, Trent M (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet 14(4):457–460CrossRefGoogle Scholar
  16. 16.
    Ecoffey S, Mazza M, Pott V, Bouvet D, Schmid A, Leblebici Y, Declercq MJ, Ionescu AM (2005) A new logic family based on hybrid MOSFET-Polysilicon nano-wires. IEEE International Electron Device Meeting, Washington, DC, December 2005Google Scholar
  17. 17.
    Ecoffey S, Pott V, Bouvet D, Mazza M, Mahapatra S, Schmid A, Leblebici Y, Declercq MJ, Ionescu AM (2005) Nano-wires for room temperature operated hybrid CMOS-NANO integrated circuits. Digest of Technical Papers IEEE International Solid-State Circuits Conference, 6–10 February 2005, pp 260–262Google Scholar
  18. 18.
    Guerrier P, Greiner A (2000) A generic architecture for on-chip packet-switched interconnections. Design Automation and Test in Europe Conference, Paris, France, March 2000, pp 250–256Google Scholar
  19. 19.
    Guiducci C, Stagni C, Zuccheri G, Bogliolo A, Benini L, Samorì A, Riccò B (2004) DNA detection by integratable electronics. Biosens Bioelectron 19:781–787CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Lehmann U, Sergio M, Pietrocola S, Niclass C, Charbon E, Gijs MAM (2007) 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers’07 and Eurosensors XXI, Lyon, France, 10–14 June 2007Google Scholar
  22. 22.
    Lehmann U (2008) Manipulation of magnetic microparticles in liquid phases for on-chip biomedical analysis methods. Ph.D Thesis, EPFLGoogle Scholar
  23. 23.
    Likharev KK, Strukov DB (2004) Introducing molecular electronics. Springer, BerlinGoogle Scholar
  24. 24.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B 31:244–248CrossRefGoogle Scholar
  25. 25.
    Maslov D, Falconer SM (2008) m. Mosca, ‘quantum circuit placement’. IEEE Trans CAD 27(4):752–763Google Scholar
  26. 26.
    Mihic C, Simunic T, De Micheli G (2007) Power and reliability management of socs. IEEE Trans VLSI 15(4):391–403CrossRefGoogle Scholar
  27. 27.
    Mo F, Brayton R (2002) Whirlpool plas: a regular logic structure and their synthesis. Proc ICCAD, pp 543–550Google Scholar
  28. 28.
    Moselund KE, Pott V, Bouvet D, Ionescu AM (2008) Hysteretic inverter-on-a-body-tied-wire based on less-than-10mv/decade abrupt punch-through impact ionization MOS PIMOS switch. Proceedings of International Symposium on VLSI Technology, Systems and Applications (2008 VLSI-TSA), Taiwan, 21–23 April 2008Google Scholar
  29. 29.
    Moselund KE, Bouvet D, Ben Jamaa MH, Atienza D, Leblebici Y, De Micheli G, Ionescu MA (2008) Prospects for logic-on-a-wire. Microelectronic Eng 85(5–6):1406–1409CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Paradiso J, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1):18–27CrossRefGoogle Scholar
  32. 32.
    Patil N, Jie D, Wong H-SP, Mitra S (2007) Automated design of misaligned-carbon-nanotube-immune circuits. Proceedings of the Design Automation Conference, June 2007, pp 958–961Google Scholar
  33. 33.
    Pease A et al (1994) Light-generated oligonucleotide arrays for rapid dna sequencing analysis. Proc Natl Acad Sci 91(11):5022–5026CrossRefGoogle Scholar
  34. 34.
    Pedram M, Rabaey J (2002) Power aware design methodologies. Springer, BerlinCrossRefGoogle Scholar
  35. 35.
    Salvatore GA, Bouvet D, Stolitchnov I, Setter N, Ionescu AM (2008) Low voltage ferroelectric FET with sub-100nm copolymer P(VDF-trfe) gate dielectric for non-volatile 1T memory. ESSDERC 2008, Edinburgh, Scotland, 15–19 September 2008Google Scholar
  36. 36.
    Schmid A, Leblebici Y (2004) Robust circuit and system design methodologies for nanometer-scale devices and single-electron transistors. IEEE Trans VLSI 12(11):1156–1166CrossRefGoogle Scholar
  37. 37.
    Shende VV, Prasad AK, Markov IL, Hayes JP (2003) Synthesis of reversible logic circuits. IEEE Trans CAD 22(6):710–722Google Scholar
  38. 38.
    Stagni C, Esposti D, Guiducci C, Paulus C, Schienle M, Maugustyniak, Zuccheri G, Samori B, Benini L, Ricco B, Thewes R (2006) Fully electronic CMOS DNA detection array based on capacitance meausurement with on-chip analog to digital conversion. Proceedings ISSC, San Francisco, 2006, pp. 69–78Google Scholar
  39. 39.
    Stolichnov I, Riester SWE, Trodahl HJ, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T (2008) Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat Mater 7(6):464–467CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Tüdos A, Besselink G, Schasfoor X (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95CrossRefGoogle Scholar
  42. 42.
    Vangal SR et al (2007) An 80-Tile 1.28TFLOPS network-on-chip in 65nm CMOS. Proceedings of the International Solid-State Circuits Conference, 11–15 Febrauary 2007, pp 98–99Google Scholar
  43. 43.
    Vangal SR, Howard J, Ruhl G, Dighe S, Wilson H, Tschanz J, Finan D, Singh A, Jacob T, Jain S, Erraguntla V, Roberts C, Hoskote Y, Borkar N, Borkar S (2008) An 80-tile sub-100-W teraflops processor in 65-nm CMOS. IEEE J Solid State Circuits 43(1):29–41CrossRefGoogle Scholar
  44. 44.
    Vankamamidi V, Ottavi M, Lombardi F (2008) Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans CAD 27(1):34–44Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Integrated Systems LabEPFL – Swiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations