Skip to main content

The Heliospheric Magnetic Field and Its Extension to the Inner Heliosheath

  • Chapter
From the Outer Heliosphere to the Local Bubble

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 31))

  • 544 Accesses

Abstract

The general structure of the heliospheric magnetic field is well known and has been extensively studied, mostly in the inner heliosphere, out to the orbit of Saturn. Beyond 10 AU, the Pioneer and now the Voyager spacecraft have provided a view of the outer heliosphere. Its structure is strongly affected by large-scale phenomena originating in the Sun’s activity, such as the pattern of fast and slow solar wind streams around solar minimum that lead to Corotating Interaction Regions, and the increased frequency and strength of Coronal Mass Ejections around solar maximum. The large current sheet that separates the dominant magnetic polarities in the heliospheric medium, the Heliospheric Current Sheet, provides a variable structure that evolves from a relatively simple geometry close to the solar equatorial plane to what is likely to be a highly complex and dynamic surface reaching to high heliolatitudes at high levels of solar activity. The magnetic field observed in a fluctuating, dynamical heliosheath differs considerably from that in a static heliosheath. In particular, the time between current-sheet crossings (sectors) is quite sensitive to the radial speed of the solar-wind termination shock. If an inwardly moving termination shock moves past an observer on a slowly moving spacecraft, the time between current-sheet crossings in the heliosheath becomes larger, and can become very large, for reasonably expected inward shock speeds. This effect may help to explain recent observations of the magnetic field from the Voyager 1 spacecraft, where, in the heliosheath, the magnetic field remained directed outward from the Sun for several months without a current-sheet crossing. The crossings finally resumed and now occur somewhat regularly. In addition, the magnetic fluctuations in the heliosheath are observed to be quite different from those in the supersonic upstream solar wind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Balogh, J.T. Gosling, J.R. Jokipii, R. Kallenbach, H. Kunow, Corotating Interaction Regions, Space Science Series of ISSI, vol. 7 (Kluwer, Dordrecht, 1999)

    Google Scholar 

  • A. Barnes, Motion of the heliospheric termination shock—A gas dynamic model. J. Geophys. Res. 98, 15,137–15,146 (1993)

    ADS  Google Scholar 

  • L.F. Burlaga, N.F. Ness, Magnetic fields in the distant heliosphere approaching solar minimum: Voyager 1 and 2 observations during 1994. J. Geophys. Res. 101, 13,473–13,481 (1996)

    ADS  Google Scholar 

  • L.F. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock—Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673–6684 (1981)

    Article  ADS  Google Scholar 

  • L.F. Burlaga, R.P. Lepping, K.W. Behannon, L.W. Klein, Large-scale interplanetary magnetic fields—Voyager 1 and 2 observations between 1 AU and 9.5 AU. J. Geophys. Res. 89, 10659–10668 (1984)

    Article  ADS  Google Scholar 

  • L.F. Burlaga, M.L. Goldstein, F.B. McDonald, A.J. Lazarus, Cosmic ray modulation and turbulent interaction regions near 11 AU. J. Geophys. Res. 90, 12,027–12,039 (1985)

    ADS  Google Scholar 

  • L.F. Burlaga, C. Wang, J.D. Richardson, N.F. Ness, Evolution of magnetic fields in Corotating Interaction Regions from 1 to 95 AU: Order to chaos. Astrophys. J. 590, 554–566 (1993)

    Article  ADS  Google Scholar 

  • L.F. Burlaga, N.F. Ness, J.W. Belcher, Radial evolution of corotating merged interaction regions and flows between ∼14 AU and 43 AU. J. Geophys. Res. 102, 4,661–4,671 (1997)

    ADS  Google Scholar 

  • L.F. Burlaga, N.F. Ness, Y.-M. Wang, N.R. Sheeley Jr., Heliospheric magnetic field strength and polarity from 1 to 81 AU during the ascending phase of solar cycle 23. J. Geophys. Res. 107(A11), 1410 (2002). doi:10.1029/2001JA009217

    Article  Google Scholar 

  • L.F. Burlaga, F.B. McDonald, N.F. Ness, Cosmic ray modulation and the distant heliospheric magnetic field. J. Geophys. Res. 98, 1–11 (2003)

    Article  ADS  Google Scholar 

  • L.F. Burlaga, N.F. Ness, M.H. Acuña, R.P. Lepping, J.E.P. Connerney, E.C. Stone, F.B. McDonald, Crossing the termination shock into the heliosheath: Magnetic fields. Science 309, 2027–2029 (2005)

    Article  ADS  Google Scholar 

  • L.F. Burlaga, N.F. Ness, M.H. Acuña, Magnetic fields in the heliosheath: Voyager 1 observations. Astrophys. J. 642, 584–592 (2006)

    Article  ADS  Google Scholar 

  • N.U. Crooker, J.T. Gosling , CIR morphology, turbulence, discontinuities, and energetic particles. Space Sci. Rev. 89, 179–220 (1993)

    Article  ADS  Google Scholar 

  • R.B. Decker, S.M. Krimigis, E.C. Roelof, M.E. Hill, T.P. Armstrong, G. Gloeckler, D.C. Hamilton, L.J. Lanzerotti, Science 309, 2020–2024 (2005)

    Article  ADS  Google Scholar 

  • L.A. Fisk, Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15,547–15,554 (1996)

    Article  ADS  Google Scholar 

  • R.J. Forsyth, A. Balogh, T.S. Horbury, G. Erdoes, E.J. Smith, M.E. Burton, Astron. Astrophys. 316, 287 (1996)

    ADS  Google Scholar 

  • R.J. Forsyth, A. Balogh, E.J. Smith, The underlying direction of the heliospheric magnetic field through the Ulysses first orbit. J. Geophys. Res. 107(A11), SSH19-1 (2002). doi:10.1029/2001JA005056

    Article  Google Scholar 

  • J. Giacalone, J.R. Jokipii, Magnetic footpoint diffusion at the Sun and its relation to the heliospheric magnetic field. Astrophys. J. 616, 573 (2004)

    Article  ADS  Google Scholar 

  • J. Giacalone, J.R. Jokipii, Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. 63, 41 (2007)

    Article  Google Scholar 

  • J.T. Gosling, Coronal mass ejections and magnetic flux ropes in interplanetary space, in Physics of Magnetic Flux Ropes. (American Geophysical Union, Washington, 1990), pp. 343–364. A92-31201 12-75

    Google Scholar 

  • J.T. Gosling, V.J. Pizzo, Formation and evolution of corotating interaction regions and their three-dimensional structure. Space Sci. Rev. 89, 21–52 (1999)

    Article  ADS  Google Scholar 

  • J.T. Gosling, A.J. Hundhausen, V. Pizzo, J.R. Asbridge, Compressions and rarefactions in the solar wind: Vela 3. J. Geophys. Res. 77, 5,442–5,454 (1972)

    ADS  Google Scholar 

  • T.J. Hoeksema, J.M. Wilcox, P.H. Scherrer, Structure of the heliospheric current sheet in the early portion of sunspot cycle 21. J. Geophys. Res. 87, 10,331–10,338 (1982)

    Article  ADS  Google Scholar 

  • A.J. Hundhausen, Sizes and locations of coronal mass ejections—SMM observations from 1980 and 1984–1989. J. Geophys. Res. 98, 13,177–13,200 (1993)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, J. Giacalone, Anomalous cosmic rays at a termination-shock crossing, in Proc. 28th International Cosmic Ray Conference, vol. 7, Tsukuba, Japan (2003), p. 3753

    Google Scholar 

  • J.R. Jokipii, J. Kóta, The polar heliospheric magnetic field. Geophys. Res. Lett. 16, 1–4 (1989)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, E.N. Parker, Random walk of magnetic lines of force in astrophysics. Phys. Rev. Lett. 21, 44–47 (1968)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, B.T. Thomas, Effects of drift on the transport of cosmic rays. IV—Modulation by a wavy interplanetary current sheet. Astrophys. J. 243, 1115–1122 (1981)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, J. Kóta, J. Giacalone, T.S. Horbury, E.J. Smith, Interpretation and consequences of large-scale magnetic variances observed at high heliographic latitude. Geophys. Res. Lett. 22, 3385–3388 (1995)

    Article  ADS  Google Scholar 

  • G.H. Jones, A. Balogh, E.J. Smith, Solar magnetic field reversal as seen at Ulysses. Geophys. Res. Lett. 30, ULY2-1 (2003). doi:10.1029/2003GL017204

    Google Scholar 

  • A.S. Krieger, A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505–525 (1973)

    Article  ADS  Google Scholar 

  • H. Kunow, N.U. Crooker, J.A. Linker, R. Schwenn, R. von Steiger (eds.), Coronal Mass Ejections. Space Science Series of ISSI, vol. 21 (Springer, Dordrecht, 2006)

    Google Scholar 

  • A.J. Lazarus, J.D. Richardson, R.B. Decker, F.B. McDonald, Voyager 2 observations of Corotating Interaction Regions (CIRs) in the outer heliosphere. Space Sci. Rev. 89, 53–59 (1999)

    Article  ADS  Google Scholar 

  • M.A. Lee, An analytical theory of the morphology, flows, and shock compressions at corotating interaction regions in the solar wind. J. Geophys. Res. 105, 10491–10500 (2000)

    Article  ADS  Google Scholar 

  • S.T. Lepri, T.H. Zurbuchen, Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum. J. Geophys. Res. 109, A01112 (2004). doi:10.1029/2003JA009954

    Article  Google Scholar 

  • J.A. le Roux, H. Fichtner, Global merged interaction regions, the heliospheric termination shock, and time-dependent cosmic ray modulation. J. Geophys. Res. 104, 4709–4730 (1999)

    Article  ADS  Google Scholar 

  • F.B. McDonald, A. Barnes, L.F. Burlaga, P. Gazis, J. Mihalov, R.S. Selenick, The effects of the intense solar activity of March/June 1991 observed in the outer heliosphere, in Proc. 23rd International Cosmic Ray Conference, vol. 3 (1993), p. 350

    Google Scholar 

  • A.G. Nash, Jr. N.R. Sheeley, Y.-M. Wang, Mechanisms for the rigid rotation of coronal holes. Sol. Phys. 117, 359–389 (1988)

    Article  ADS  Google Scholar 

  • N.F. Ness, J.W. Wilcox, Structure of the quiet interplanetary magnetic field. Science 148, 1592–1594 (1965)

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of interplanetary gas and magnetic field. Astrophys. J. 128, 644–670 (1958)

    ADS  Google Scholar 

  • E.N. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963)

    MATH  Google Scholar 

  • V.J. Pizzo, J.T. Gosling, Three-dimensional simulation of high-latitude interaction regions: Comparison with Ulysses results. Geophys. Res. Lett. 21, 2063–2066 (1994)

    Article  ADS  Google Scholar 

  • A. Rees, R.J. Forsyth, Two examples of magnetic clouds with double rotations observed by the Ulysses spacecraft. Geophys. Res. Lett. 31, L06804 (2004). doi:10.1029/2003GL018330

    Article  Google Scholar 

  • J.D. Richardson, K.I. Paularena, C. Wang, L.F. Burlaga, The life of a CME and the development of a MIR: From the Sun to 58 AU. J. Geophys. Res. 107, SSH1-1 (2002). doi:10.1029/2001JA000175

    Google Scholar 

  • J.D. Richardson, Y. Liu, C. Wang, L.F. Burlaga, ICMEs at very large distances. Adv. Space Res. 38, 528–534 (2006)

    Article  ADS  Google Scholar 

  • J.D. Richardson, Y. Liu, C. Wang, Solar wind structure in the outer heliosphere. Adv. Space Res. 41, 237–244 (2008)

    Article  ADS  Google Scholar 

  • D.A. Roberts, J. Giacalone, J.R. Jokipii, M.L. Goldstein, T.D. Zepp, Spectra of polar heliospheric fields and implications for field structure. J. Geophys. Res. 112, A8 (2007). CiteID A08103

    Google Scholar 

  • K.H. Schatten, J.M. Wilcox, N.F. Ness, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442–455 (1969)

    Article  ADS  Google Scholar 

  • E.J. Smith, Interplanetary magnetic field over two solar cycles and out to 20 AU. Adv. Space Res. 9(4), 159–169 (1989)

    Article  ADS  Google Scholar 

  • E.J. Smith, The heliospheric current sheet. J. Geophys. Res. 106, 15,819–15,831 (2001)

    ADS  Google Scholar 

  • E.J. Smith, The global heliospheric magnetic field, in The Heliosphere through the Solar Activity Cycle, ed. by A. Balogh, L.J. Lanzerotti, S.T. Suess (Springer, Chichester, 2007), pp. 79–150

    Google Scholar 

  • E.J. Smith, A. Balogh, Ulysses observations of the radial magnetic field. Geophys. Res. Lett. 22, 3317–3320 (1995)

    Article  ADS  Google Scholar 

  • E.J. Smith, J.H. Wolfe, Observations of interaction regions and corotating shocks between one and five AU: Pioneer 10 and 11. Geophys. Res. Lett. 3, 137 (1976)

    Article  ADS  Google Scholar 

  • H.B. Snodgrass, Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288 (1983)

    Article  ADS  Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020 (2005)

    Article  ADS  Google Scholar 

  • S.T. Suess, The relationship between coronal and interplanetary magnetic fields. Adv. Space Res. 13(9), 31–42 (1993a)

    Article  ADS  Google Scholar 

  • S.T. Suess, Temporal variations in the termination shock distance. J. Geophys. Res. 98, 15,147–15,155 (1993b)

    Article  ADS  Google Scholar 

  • B.T. Thomas, E.J. Smith, The Parker spiral configuration of the interplanetary magnetic field between 1 and 8.5 AU. J. Geophys. Res. 85, 6861–6867 (1980)

    Article  ADS  Google Scholar 

  • B.T. Thomas, E.J. Smith, The structure and dynamics of the heliospheric current sheet. J. Geophys. Res. 86, 11105–11110 (1981)

    Article  ADS  Google Scholar 

  • A.F. Timothy, A.S. Krieger, G.S. Vaiana, The structure and evolution of coronal holes. Sol. Phys. 42, 135–156 (1975)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, On the latitude and solar cycle dependence of the interplanetary magnetic field strength. Astrophys. J. 410, L123 (1993)

    Article  ADS  Google Scholar 

  • Y.C. Whang, L.F. Burlaga, Evolution and interaction of interplanetary shocks. J. Geophys. Res. 90, 10,765–10,778 (1985)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Why fast solar wind originates from slowly expanding coronal flux tubes. Astrophys. J. 372, L45 (1991)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Understanding the rotation of coronal holes. Astrophys. J. 414, 916–927 (1993)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., The solar wind and its magnetic sources at sunspot maximum. Astrophys. J. 587, 818–822 (2003a)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., On the topological evolution of the coronal magnetic field during the solar cycle. Astrophys. J. 599, 1404–1417 (2003b)

    Article  ADS  Google Scholar 

  • Y.C. Whang, L.F. Burlaga, Y.-M. Wang, N.R. Sheeley Jr., The termination shock near 35° latitude. Geophys. Res. Lett. 31, L0385 (2004)

    Article  Google Scholar 

  • J.W. Wilcox, N.F. Ness, Quasi-stationary corotating structure in the interplanetary medium. J. Geophys. Res. 70, 5793 (1965)

    Article  ADS  Google Scholar 

  • R.F. Wimmer-Schweingruber, R. von Steiger, R. Paerli, Solar wind stream interfaces in corotating interaction regions: SWICS/Ulysses results. J. Geophys. Res. 102, 17407–17418 (1997)

    Article  ADS  Google Scholar 

  • S. Yashiro, N. Gopalswamy, G. Michalek, O.C.St. Cyr, P. Plunkett, N.B. Rich, R.A. Howard, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105 (2004). doi:10.1029/2003JA010282

    Article  Google Scholar 

  • T.H. Zurbuchen, N.A. Schwadron, L.A. Fisk, Direct observational evidence for a heliospheric magnetic field with large excursions in latitude. J. Geophys. Res. 102(A11), 24175–24182 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Balogh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, BV

About this chapter

Cite this chapter

Balogh, A., Jokipii, J.R. (2009). The Heliospheric Magnetic Field and Its Extension to the Inner Heliosheath. In: Linsky, J.L., Izmodenov, V.V., Möbius, E., von Steiger, R. (eds) From the Outer Heliosphere to the Local Bubble. Space Sciences Series of ISSI, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0247-4_8

Download citation

Publish with us

Policies and ethics