Advertisement

Group-Based Modeling: An Overview

  • Daniel S. Nagin
Chapter
Part of the Handbooks of Sociology and Social Research book series (HSSR)

This chapter provides an overview of a group-based statistical methodology for analyzing developmental trajectories—the evolution of an outcome over age or time. A detailed account of the method’s statistical underpinnings and a full range of applications are provided in Nagin (2005).

Keywords

Physical Aggression Developmental Trajectory Trajectory Group Population Member Finite Mixture Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338–363.CrossRefGoogle Scholar
  2. Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9, 3–29.CrossRefGoogle Scholar
  3. Bergman, L. R. (1998). A pattern-oriented approach to studying individual development: Snapshots and processes. In R. B. Cairns, L. R. Bergman, & J. Kagan (Eds.), Methods and models for studying the individual (pp. 83–122). Thousand Oaks, CA: Sage Publications.Google Scholar
  4. Bryk, A. S., & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change. Psychology Bulletin, 101, 147–158.CrossRefGoogle Scholar
  5. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models for social and behavioral research: Application and data analysis methods. Newbury Park, CA: Sage Publications.Google Scholar
  6. Cramér, H. (1946). Mathematical methods of statistics. Princeton, NJ: Princeton University Press.Google Scholar
  7. Elder, G. H., Jr. (1985). Perspectives on the life course. In G. H. Elder, Jr. (Ed.), Life course dynamics. Ithaca, NY: Cornell University Press.Google Scholar
  8. Everitt, B. S., & Hand, D. J. (1981). Finite mixture distributions. London: Chapman and Hall.CrossRefGoogle Scholar
  9. Goldstein, H. (1995). Multilevel statistical models (2nd ed.). London: Edward Arnold.Google Scholar
  10. Greene, W. H. (1990). Econometric analysis. New York: Macmillan.Google Scholar
  11. Haviland, A., Nagin, D. S., & Rosenbaum, P. R. (2007). Combining propensity score matching and group-based trajectory modeling in an observational study, Psychological Methods, 12, 247–267.CrossRefGoogle Scholar
  12. Haviland, A., Nagin, D. S., Rosenbaum, P. R., & Tremblay, R. E. (2008). Combining group-based trajectory modeling and propensity score matching for causal inferences in nonexperimental longitudinal data. Developmental Psychology, 44(2), 422–436.CrossRefGoogle Scholar
  13. Heckman, J., & Singer, B. (1984). A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica, 52, 271–320.CrossRefGoogle Scholar
  14. Lacourse, E., Nagin, D., Vitaro, F., Claes, M., & Tremblay, R. E. (2003). Developmental trajectories of boys delinquent group membership and facilitation of violent behaviors during adolescence. Development and Psychopathology, 15, 183–197.CrossRefGoogle Scholar
  15. MacCallum, R. C., Kim, C., Malarkey, W. B., & Kiecolt-Glaser, J. K. (1997). Studying multivariate change using multilevel models and latent curve models. Multivariate Behavioral Research, 32, 215–253.CrossRefGoogle Scholar
  16. Magnusson, D. (1998). The logic and implications of a person-oriented approach. In R. B. Cairns, L. R. Bergman, & J. Kagan (Eds.), Methods and models for studying the individual (pp. 33–64). Thousand Oaks, CA: Sage Publications.Google Scholar
  17. McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110–113.CrossRefGoogle Scholar
  18. McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.Google Scholar
  19. Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.CrossRefGoogle Scholar
  20. Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100(4), 674–701.CrossRefGoogle Scholar
  21. Moffitt, T. E. (1997). Adolescence-limited and life-course-persistent offending: A complementary pair of developmental theories. In T. P. Thornberry (Ed.), Advances in criminological theory (pp. 11–54). New Brunswick, NJ: Transaction Publishers.Google Scholar
  22. Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557–585.CrossRefGoogle Scholar
  23. Muthén, B. O. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent curve modeling. In A. Sayers & L. Collins (Eds.), New methods for the analysis of change (pp. 291–322). Washington, DC: American Psychological Association.Google Scholar
  24. Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm.Biometrics, 55, 463–469.CrossRefGoogle Scholar
  25. Nagin, D., Pagani, L., Tremblay, R., & Vitaro, F. (2003). Life course turning points: A case study of the effect of school failure on interpersonal violence. Development and Psychopathology, 15, 343–361.CrossRefGoogle Scholar
  26. Nagin, D. S. (2005). Group-based modeling of development. Cambridge, MA: Harvard University Press.Google Scholar
  27. Nagin, D. S., & Tremblay, R. E. (1999). Trajectories of boys’ physical aggression, opposition, and hyperactivity on the path to physically violent and nonviolentjuvenile delinquency. Child Development, 70, 1181–1196.CrossRefGoogle Scholar
  28. Nagin, D. S., & Tremblay, R. E. (2001). Parental and early childhood predictors of persistent physical aggression in boys from kindergarten to high school. Archives of General Psychiatry, 58, 389–394.CrossRefGoogle Scholar
  29. Raudenbush, S. W. (2001). Comparing personal trajectories and drawing causal inferences from longitudinal data. Annual Review of Psychology, 52, 501–525.CrossRefGoogle Scholar
  30. Rosenbaum, P. & Rubin, D. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55.CrossRefGoogle Scholar
  31. Thiel, H. (1971). Principals of econometrics. New York, NY: Wiley.Google Scholar
  32. Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions. New York: Wiley.Google Scholar
  33. Tremblay, R. E., & Nagin, D. S. (2005). The development origins of physical aggression in humans. In R. E. Tremblay, W. W. Hartup, & J. Archer (Eds.), Developmental origins of aggression (pp. 83–106). New York: Guilford.Google Scholar
  34. Warr, M. (2002). Companions in crime: The social aspects of criminal conduct. New York: Cambridge University Press.Google Scholar
  35. Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363–381.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Daniel S. Nagin
    • 1
  1. 1.Heinz College, Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations