Advertisement

Flux-Transport Solar Dynamos

Part of the Space Sciences Series of ISSI book series (SSSI, volume 32)

Abstract

Large-scale solar dynamo models were first built by Parker (1955). Over the past half a century these models have evolved significantly. We discuss here the development of a class of large-scale dynamo models which include, along with the α-effect and Ω-effect, an important third process, flux transport by meridional circulation. We present the properties of this ‘flux-transport’ dynamo, including the crucial role meridional circulation plays in giving this dynamo predictive power.

Keywords

Solar activity Dynamo Meridional circulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961) CrossRefADSGoogle Scholar
  2. H.W. Babcock, H.D. Babcock, The Sun’s magnetic field, 1952–1954. Astrophys. J. 121, 349 (1955) CrossRefADSGoogle Scholar
  3. S. Basu, H.M. Antia, Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553 (2003) CrossRefADSGoogle Scholar
  4. A. Bonanno, D. Elstner, G. Rüdiger, G. Belvedere, Parity properties of an advection dominated solar alpha 2 Ω-dynamo. Astron. Astrophys. 390, 673–680 (2002) CrossRefADSGoogle Scholar
  5. A. Bonanno, D. Elstner, G. Belvedere, G. Rudiger, A flux-transport dynamo with a multi-cell meridional circulation. Astron. Nachr. 326, 170 (2005) MATHCrossRefADSGoogle Scholar
  6. D.C. Braun, Y. Fan, Helioseismic measurements of the subsurface meridional flow. Astrophys. J. Lett. 508, L105 (1998) CrossRefADSGoogle Scholar
  7. T.M. Brown, J. Christensen-Dalsgaard, W.A. Dziembowski, P.R. Goode, D.O. Gough, C.A. Morrow, Inferring the sun’s internal angular velocity from observed p-mode frequency splittings. Astrophys. J. 343, 526 (1989) CrossRefADSGoogle Scholar
  8. M. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal field. Astrophys. J. 648, L157 (2006) CrossRefADSGoogle Scholar
  9. F. Cavallini, G. Ceppatelli, A. Righini, About spectroscopic measurements of the solar meridional motion. Astron. Astrophys. 254, 381 (1992) ADSGoogle Scholar
  10. A.R. Choudhuri, M. Schussler, M. Dikpati, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29 (1995) ADSGoogle Scholar
  11. T. Corbard, G. Berthomieu, J. Provost, P. Morel, Inferring the equatorial solar tachocline from frequency splittings. Astron. Astrophys. 330, 1149 (1998) ADSGoogle Scholar
  12. C.R. Devore, J.P. Boris, N.R. Sheeley Jr., The concentration of the large-scale solar magnetic field by a meridional surface flow. Sol. Phys. 92, 1 (1984) CrossRefADSGoogle Scholar
  13. M. Dikpati, Global MHD theory of tachocline and the current status of large-scale solar dynamo. Proc. SOHO 14 / GONG 2004 Workshop ESA SP-559 (2004), p. 233 Google Scholar
  14. M. Dikpati, P. Charbonneau, A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508 (1999) CrossRefADSGoogle Scholar
  15. M. Dikpati, P.A. Gilman, Flux-transport dynamos with alpha-effect from global instability of tachocline differential rotation: A solution for magnetic parity selection in the Sun. Astrophys. J. 559, 428 (2001) CrossRefADSGoogle Scholar
  16. M. Dikpati, G. de Toma, P.A. Gilman, C.N. Arge, O.R. White, Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601, 1136 (2004) CrossRefADSGoogle Scholar
  17. M. Dikpati, G. de Toma, P.A. Gilman, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102 (2006) CrossRefGoogle Scholar
  18. M. Dikpati, P.A. Gilman, Sol. Phys. 241, 1 (2007) CrossRefADSGoogle Scholar
  19. B.R. Durney, On a Babcock-Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Sol. Phys. 63, 3 (1995) Google Scholar
  20. T.L. Duvall Jr., Large-scale solar velocity fields. Sol. Phys. 63, 3 (1979) CrossRefADSGoogle Scholar
  21. W.A. Dziembowski, P.R. Goode, K.G. Libbrecht, The radial gradient in the Sun’s rotation. Astrophys. J. 337, L53 (1989) CrossRefADSGoogle Scholar
  22. P.M. Giles, T.L. Duvall Jr., P.H. Scherrer, R.S. Bogart, A flow of material from the suns equator to its poles. Nature 390, 52 (1997) CrossRefADSGoogle Scholar
  23. P.A. Gilman, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II – Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. 53, 243 (1983) CrossRefADSGoogle Scholar
  24. P.A. Gilman, C.A. Morrow, E.E. Deluca, Angular momentum transport and dynamo action in the Sun – Implications of recent oscillation measurements. Astrophys. J. 338, 528–537 (1989) CrossRefADSGoogle Scholar
  25. G.A. Guererro, J.D. Munoz, Kinematic solar dynamo models with a deep meridional flow. Mon. Not. R. Astron. Soc. 350, 317 (2004) CrossRefADSGoogle Scholar
  26. D.A. Haber, B.W. Hindman, J. Toomre, R.S. Bogart, R.M. Larsen, F. Hill, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855 (2002) CrossRefADSGoogle Scholar
  27. D. Hathaway, P. Gilman, J. Harvey, F. Hill, R. Howard, H. Jones, J. Kasher, J. Leibacher, J. Pintar, G. Simon, GONG observations of solar surface flows. Science 272, 1306 (1996) CrossRefADSGoogle Scholar
  28. L. Jouve, A.S. Brun, On the role of meridional flows in flux transport dynamo models. Astron. Astrophys. 474, 239–250 (2007) CrossRefADSGoogle Scholar
  29. R.W. Komm, R.F. Howard, J.W. Harvey, Meridional flow of small photospheric magnetic features. Sol. Phys. 147, 207–233 (1993) CrossRefADSGoogle Scholar
  30. M. Küker, G. Rüdiger, M. Schultz, Circulation-dominated solar shell dynamo models with positive alpha-effect. Astron. Astrophys. 374, 301 (2001) CrossRefADSGoogle Scholar
  31. R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 166, 1 (1969) CrossRefADSGoogle Scholar
  32. M.S. Miesch, A.S. Brun, M.L. de Rosa, J. Toomre, Structure and evolution of giant cells in global models of solar convection. Astrophys. J. 673, 557 (2008) CrossRefADSGoogle Scholar
  33. M. Rempel, Influence of random fluctuations in the Λ-effect on meridional flow and differential rotation. Astrophys. J. 622, 1320 (2005) CrossRefADSGoogle Scholar
  34. M. Rempel, Transport of toroidal magnetic field by the meridional flow at the base of the solar convection zone. Astrophys. J. 647, 662 (2006) CrossRefADSGoogle Scholar
  35. C.J. Schrijver, M.L. de Rosa, A.M. Title, What is missing from our understanding of long-term solar and heliospheric activity? Astrophys. J. 577, 1006 (2002) CrossRefADSGoogle Scholar
  36. M. Steenbeck, F. Krause, K.-H. Rädler, A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion under the influence of coriolis forces. Z. Naturforsch. 21, 369 (1966) ADSGoogle Scholar
  37. S. Tomczyk, J. Schou, M.J. Thompson, Measurement of the rotation rate in the deep solar interior. Astrophys. J. 448, L57 (1995) CrossRefADSGoogle Scholar
  38. R.K. Ulrich, J.E. Boyden, The solar surface toroidal magnetic field. Astrophys. J. 620, L123 (2005) CrossRefADSGoogle Scholar
  39. R.K. Ulrich, J.E. Boyden, L. Webster, S.P. Padilla, H.B. Snodgrass, Solar rotation measurements at Mount Wilson. V – Reanalysis of 21 years of data. Sol. Phys. 117, 291 (1988) CrossRefADSGoogle Scholar
  40. S. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V.N. Strakhov, M.J. Thompson, Helioseismic measurement of solar torsional oscillations. Science 296, 101 (2002) CrossRefADSGoogle Scholar
  41. Y.-M. Wang, N.R. Sheeley Jr., Magnetic flux transport and the sun’s dipole moment – New twists to the Babcock-Leighton model. Astrophys. J. 375, 761 (1991) CrossRefADSGoogle Scholar
  42. Y.-M. Wang, A.G. Nash, N.R. Sheeley, Magnetic flux transport on the Sun. Science 245, 712 (1989) CrossRefADSGoogle Scholar
  43. Y.-M. Wang, A.G. Nash, N.R. Sheeley, A new solar cycle model including meridional circulation. Astrophys. J. 383, 431 (1991) CrossRefADSGoogle Scholar
  44. J. Zhao, A.G. Kosovichev, Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the Sun by time–distance helioseismology. Astrophys. J. 603, 776 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, BV 2009

Authors and Affiliations

  1. 1.HAO/NCARBoulderUSA

Personalised recommendations