Advertisement

Preferential Infinitesimals for Information Retrieval

  • Maria Chowdhury
  • Alex Thomo
  • William W. Wadge
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 296)

Abstract

In this paper, we propose a preference framework for information retrieval in which the user and the system administrator are enabled to express preference annotations on search keywords and document elements, respectively. Our framework is flexible and allows expressing preferences such as “A is infinitely more preferred than B,” which we capture by using hyperreal numbers. Due to the widespread of XML as a standard for representing documents, we consider XML documents in this paper and propose a consistent preferential weighting scheme for nested document elements. We show how to naturally incorporate preferences on search keywords and document elements into an IR ranking process using the well-known TF-IDF ranking measure.

Keywords

Information Retrieval Search Keyword System Administrator Inverse Document Frequency Music Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aizawa N. A. An Information-Theoretic Perspective of TF-IDF measures. Inf. Process. Manage. 39(1): 45–65, 2003.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bex J. G., F. Neven, T. Schwentick and K. Tuyls. Inference of Concise DTDs from XML Data. Proc. VLDB ′06, pp. 115–126.Google Scholar
  3. 3.
    Bruggemann-Klein A. and D. Wood. One-Unambiguous Regular Languages. Inf. Comput. 140(2): 229–253, 1998.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chowdhury M., A. Thomo, and W. Wadge. Preferential Infinitesimals for Information Retrieval. Full version: http://webhome.cs.uvic.ca/?thomo/papers/aiai09.pdf
  5. 5.
    Liu B. Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. Springer, Berlin Heidelberg, 2007.MATHGoogle Scholar
  6. 6.
    Keisler H. J. Elementary Calculus: An Approach Using Infinitesimals. On-line Edition: http://www.math.wisc.edu/?keisler/keislercalc1.pdf 2002.
  7. 7.
    Keisler H. J. Foundations of Infinitesimal Calculus. On-line Edition: http://www.math.wisc.edu/?keisler/foundations.pdf 2007.
  8. 8.
    Manning D. C, P. Raghavan and H. Schutze Introduction to Information Retrieval. Cambridge University Press. 2008.Google Scholar
  9. 9.
    Shannon C. E. A Mathematical Theory of Communication. The Bell System Technical Journal 27: 379–423, 1948.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Robertson S. Understanding Inverse Document Frequency: On theoretical arguments for IDF. J. of Documentation 60: 503–520, 2004.CrossRefGoogle Scholar
  11. 11.
    Rondogiannis P., and W. W. Wadge. Minimum Model Semantics for Logic Programs with Negation-as-Failure. ACM Trans. Comput. Log. 6 (2): 441–467, 2005.MathSciNetCrossRefGoogle Scholar
  12. 12.
    On-line Internet Shakespeare Edition. English Department, University of Victoria. http://internetshakespeare.uvic.ca/index.html
  13. 13.
    Malik S., A. Trotman, M. Lalmas, N. Fuhr. Overview of INEX 2006. Proc. 5th Workshop of the INitiative for the Evaluation of XML Retrieval, pp 1–11, 2007.Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Maria Chowdhury
    • 1
  • Alex Thomo
    • 1
  • William W. Wadge
    • 1
  1. 1.Department of Computer ScienceUniversity of VictoriaCanada

Personalised recommendations