RECONSTRUCTION OF 3D DIGITAL IMAGE OF WEEPINGFORSYTHIA POLLEN

  • Dongwu Liu
  • Zhiwei Chen
  • Hongzhi Xu
  • Wenqi Liu
  • Lina Wang
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 293)

Abstract

Confocal microscopy, which is a major advance upon normal light microscopy, has been used in a number of scientific fields. By confocal microscopy techniques, cells and tissues can be visualized deeply, and three-dimensional images created. Compared with conventional microscopes, confocal microscope improves the resolution of images by eliminating out-of-focus light. Moreover, confocal microscope has a higher level of sensitivity due to highly sensitive light detectors and the ability to accumulate images captured over time. In present studies, a series of Weeping Forsythia pollen digital images (35 images in total) were acquired with confocal microscope, and the three-dimensional digital image of the pollen reconstructed with confocal microscope. Our results indicate that it's a very easy job to analysis threedimensional digital image of the pollen with confocal microscope and the probe Acridine orange (AO).

Keywords

Glutamine Gall Jurassic Dinoflagellate Acridine 

References

  1. A. Hibbs. Confocal Microscopy for Biologists: An Intensive Introductory Course, Biocon ed, 2000, 2–9Google Scholar
  2. E. S. Anderson. Visual observation of deoxyribonucleic acid changes in bacteria during growth of bacteriophage, Nature, 1957, 180(4598): 1336–1338CrossRefGoogle Scholar
  3. E. Thouand, D. Peyrot, P. Schevin. Morphologie, biodiversite ‘et bioge’ ographie: apport de la microscopie confocale et de l'imagerie tridimensionnelle. In: Palynology, Palaeolatitudes, Palaeoaltitudes: land/ ocean distribution patterns controlling climate and biodiversity. Programmeand Abstracts, APLF–TMS–LSPGjoint meeting, 3–7 October 2005, Paris, FranceGoogle Scholar
  4. J. A. Armstrong, J. S. Niven. Fluorscence microscopy in the study of nucleic acids, Nature, 1957, 180(4598): 1335–1336CrossRefGoogle Scholar
  5. J. A. Armstrong. Histochemical differentiation of nucleic acids by means of induced fluorescence. Exp Cell Res, 1956, 11(3): 640–643CrossRefGoogle Scholar
  6. J. W. Lichtman. Confocal microscopy, Scientific American, 1994, 271: 40–53CrossRefGoogle Scholar
  7. M. Taira, U. Valtersson, B. Burkhardt,. Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts, Plant Cell, 2004, 16(8): 2048–2058CrossRefGoogle Scholar
  8. P. Hochuli, S. Feist-Burkhardt. An early boreal cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway), Journal of Micropalaeontology, 2004, 23: 97–104CrossRefGoogle Scholar
  9. P. K. Hepler, B. E. S. Gunning. Confocal fluorescence microscopy of living cells, Protoplasma, 1998: 201: 121–157CrossRefGoogle Scholar
  10. R. H. Webb. Theoretical basis of confocal microscopy, Methods in Enzymology, 1999, 307: 3–20CrossRefGoogle Scholar
  11. R.C. Cañamero, H. Boccalandro, J. Casal,. Use of confocal laser as light source reveals stomata-autonomous function, PLoS ONE, 2006, 1: e36CrossRefGoogle Scholar
  12. S. Feist-Burkhardt, E. Monteil. Gonyaulacacean dinoflagellate cysts with multi-plate precingular archaeopyle, Neues Jahrbuch für Geologie und Paläontologie, 2001, 219: 33–81Google Scholar
  13. S. Feist-Burkhardt, J. Pross. Morphological analysis and description of Middle Jurassic dinoflagellate cyst marker species using confocal laser scanning microscopy, digital optical microscopy and conventional light microscopy, Bulletin du Centre de Recherche Elf Exploration Production, 1998, 22: 103–145Google Scholar
  14. S. M. McInnis, R. Desikan, J. T. Hancock,. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytol, 2006, 172(2): 221–228CrossRefGoogle Scholar
  15. S. Rawlings, J. Byatt. How Microscopy Produces a Sharper Image, In “Scanning Microscopy.” Biophotonics International: Laurin Publishing Co. Inc, 2002, 1–4Google Scholar
  16. S. Yamaoka, C. J. Leaver. EMB2473/MIRO1, an Arabidopsis Miro GTPase, is required for embryogenesis and influences mitochondrial morphology in pollen, Plant Cell, 2008, 20(3): 589–601CrossRefGoogle Scholar
  17. T. Meckel, L. Gall, S. Semrau,. Guard cells elongate: relationship of volume and surface area during stomatal movement, Biophys J, 2007, 92(3): 1072–1080CrossRefGoogle Scholar
  18. X. Michalet, A. N. Kapanidis, T. Laurence,. The Power and Prospects of Fluorescence Microscopies and Spectroscopies, Annu Rev Biophys Biomol Struct, 2003, 32: 161–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dongwu Liu
    • 1
  • Zhiwei Chen
    • 1
  • Hongzhi Xu
    • 1
  • Wenqi Liu
    • 2
  • Lina Wang
    • 1
  1. 1.Analysis and Testing CenterShandong University of TechnologyZiboP. R.China
  2. 2.School of Life SciencesShandong University of TechnologyZiboP. R.China

Personalised recommendations