Nano- and Microparticles in Oral Delivery of Macromolecular Drugs

  • Gioconda MillottiEmail author
  • Andreas Bernkop-Schnürch


Oral delivery systems are highly demanded and preferred over parenteral systems as they offer an ease of administration and therefore a high patient compliance. A promising strategy in order to improve the oral uptake of macromolecular drugs is the use of micro- and nanoparticulate delivery systems. The most widely used materials and techniques applied in the development of micro- and nanocarrier systems are described as well as the strategies to modify the particle’s surface in order to modulate their characteristics such as mucoadhesion, stability, protective effect, hydrophilicity or lipophilicity. Particles’ properties such as membrane-passing properties, permeation-enhancing properties, mucoadhesive properties, and protective properties are extensively discussed. Furthermore, evidence for the potential of such systems is provided with examples from recent in vivo studies.


Salmon Calcitonin Mucoadhesive Property Polyglycolic Acid Macromolecular Drug Colloidal Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agnihotri, S. A., N. N. Mallikarjuna, et al. (2004). Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1): 5–28.PubMedCrossRefGoogle Scholar
  2. Albrecht, K., M. Greindl, et al. (2006). Comparative in vivo mucoadhesion studies of thiomer formulations using magnetic resonance imaging and fluorescence detection. J.Contol.Rel. 115: 78–84.CrossRefGoogle Scholar
  3. Balthasar, S., K. Michaelis, et al. (2005). Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 26(15): 2723–32.PubMedCrossRefGoogle Scholar
  4. Barbault-Foucher, S., R. Gref, et al. (2002). Design of poly-epsilon-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release 83(3): 365–75.PubMedCrossRefGoogle Scholar
  5. Bernkop-Schnurch, A., A. Weithaler, et al. (2006). Thiomers: preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int J Pharm 317(1): 76–81.PubMedCrossRefGoogle Scholar
  6. Betrholon-Rajot, I., D. Labarre, et al. (2005). Influence of the initiator system, cerium-polysaccharide, on the surface properties of poly(isobutylcyanoacrylate) nanoparticles. Polymer 46: 1407–1415.CrossRefGoogle Scholar
  7. Bowman, K., R. Sarkar, et al. (2008). Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles. J Control Release.Google Scholar
  8. Bravo-Osuna, I., C. Vauthier, et al. (2007). Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 28(13): 2233–43.PubMedCrossRefGoogle Scholar
  9. Bravo-Osuna, I., C. Vauthier, et al. (2008). Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases. J. Nanopart. Res DOI 10.1007/s11051-008-9364-5.Google Scholar
  10. Chauvierre, C., D. Labarre, et al. (2003). Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm Res 20(11): 1786–93.PubMedCrossRefGoogle Scholar
  11. Chouly, C., D. Pouliquen, et al. (1996). Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3): 245–55.PubMedCrossRefGoogle Scholar
  12. Couvreur, P., C. Dubernet, et al. (1995). Controlled drug delivery with nanoparticles: Current possibilities and future trends. Eur. J. Pharm. Biopharm. 41: 2–13.Google Scholar
  13. Couvreur, P., B. Kante, et al. (1978). [Perspective on the use of microdisperse forms as intracellular vehicles]. Pharm Acta Helv 53(12): 341–47.PubMedGoogle Scholar
  14. Couvreur, P., B. Kante, et al. (1979). Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31(5): 331–32.PubMedCrossRefGoogle Scholar
  15. Damge, C., C. Michel, et al. (1988). New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37(2): 246–51.PubMedCrossRefGoogle Scholar
  16. Damge, C., C. Michel, et al. (1990). Nanocapsules as carriers for oral peptide delivery. J.Contol.Rel. 13: 233–239.CrossRefGoogle Scholar
  17. des Rieux, A., E. G. E. Ragnarsson, et al. (2005). Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm. Sci 25: 455–465.PubMedCrossRefGoogle Scholar
  18. Desai, M. P., G. L. Labhasetwar, et al. (1996). Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13(12): 1838–1845.PubMedCrossRefGoogle Scholar
  19. Deutel, B., M. Greindl, et al. (2008). Novel insulin thiomer nanoparticles: in vivo evaluation of an oral drug delivery system. Biomacromolecules 9(1): 278–85.PubMedCrossRefGoogle Scholar
  20. Dillen, K., J. Vandervoort, et al. (2004). Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm 275(1–2): 171–87.PubMedCrossRefGoogle Scholar
  21. Durrer, C., J. M. Irache, et al. (1994). Mucoadhesion of latexes II. Adsorption isotherms and desorption studies. Pharm Res 11(5): 680–683.PubMedCrossRefGoogle Scholar
  22. Eiamtrakarn, S., M. Itoh, et al. (2002). Gastrointestinal mucoadhesive patch system (GI-MAPS) for oral administration of G-CSF, a model protein. Biomat. 23: 145–152.CrossRefGoogle Scholar
  23. Florence, A. T., A. M. Hillery, et al. (1995). Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release 36: 39–46.CrossRefGoogle Scholar
  24. Fonseca, C., S. Simoes, et al. (2002). Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83(2): 273–286.PubMedCrossRefGoogle Scholar
  25. Galindo-Rodriguez, S. A., E. Allemann, et al. (2005). Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst 22(5): 419–64.PubMedGoogle Scholar
  26. Garinot, M., V. Fievez, et al. (2007). PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120(3): 195–204.PubMedCrossRefGoogle Scholar
  27. Gref, R., Y. Minamitake, et al. (1994). Biodegradable long-circulating polymeric nanospheres. Science 263(5153): 1600–3.PubMedCrossRefGoogle Scholar
  28. Habberfield, A., K. Jensen-Pippo, et al. (1996). Vitamin B12-mediated uptake of erythropoietin and granulocyte colony stimulating factor in vitro and in vivo. Int J Pharm 145(1–2): 1–8.CrossRefGoogle Scholar
  29. Janes, K. A., P. Calvo, et al. (2001). Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47(1): 83–97.PubMedCrossRefGoogle Scholar
  30. Johnson, F. A., D. Q. Craig, et al. (1997). Characterization of the block structure and molecular weight of sodium alginates. J Pharm Pharmacol 49(7): 639–43.PubMedCrossRefGoogle Scholar
  31. Jung, T., W. Kamm, et al. (2000). Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 50(1): 147–60.PubMedCrossRefGoogle Scholar
  32. Kreuter, J. (1991). Peroral administration of nanoparticles. Adv Drug Deliv Rev 7: 71–86.CrossRefGoogle Scholar
  33. Kreuter, J., U. Müller, et al. (1989). Quantitative and microaudiographic study on mouse intestinal distribution of polycyanoacrylate nanoparticles. Int J Pharm 55: 39–45.CrossRefGoogle Scholar
  34. Lamprecht, A., U. Schäfer, et al. (2001). Size dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res. 18(6): 788–793.PubMedCrossRefGoogle Scholar
  35. Lemarchand, C., R. Gref, et al. (2004). Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 58(2): 327–41.PubMedCrossRefGoogle Scholar
  36. Leo, E., B. Brina, et al. (2004). In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int J Pharm 278(1): 133–41.PubMedCrossRefGoogle Scholar
  37. Lin, Y. H., F. L. Mi, et al. (2007). Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8(1): 146–52.PubMedCrossRefGoogle Scholar
  38. Mi, F. L., Y. Y. Wu, et al. (2008). Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem 19(6): 1248–55.PubMedCrossRefGoogle Scholar
  39. Pan, Y., Y. J. Li, et al. (2002). Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 249(1–2): 139–47.PubMedCrossRefGoogle Scholar
  40. Passirani, C., L. Ferrarini, et al. (1999). Preparation and characterization of nanoparticles bearing heparin or dextran covalently-linked to poly(methyl methacrylate). J Biomater Sci Polym Ed 10(1): 47–62.PubMedCrossRefGoogle Scholar
  41. Ponchel, G. and J. Irache (1998). Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv Drug Deliv Rev 34(2–3): 191–219.PubMedCrossRefGoogle Scholar
  42. Prego, C., D. Torres, et al. (2006). Chitosan-PEG nanocapsules as new carriers for oral peptide delivery. Effect of chitosan pegylation degree. J Control Release 111(3): 299–308.PubMedCrossRefGoogle Scholar
  43. Rawat, M., D. Singh, et al. (2006). Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9): 1790–8.PubMedCrossRefGoogle Scholar
  44. Rouzes, C., R. Gref, et al. (2000). Surface modification of poly(lactic acid) nanospheres using hydrophobically modified dextrans as stabilizers in an o/w emulsion/evaporation technique. J Biomed Mater Res 50(4): 557–65.PubMedCrossRefGoogle Scholar
  45. Sakuma, S., Y. Ishida, et al. (1997). Stabilization of salmon calcitonin by polystyrene nanoparticles having surface hydrophilic polymeric chains, against enzymatic degradation. Int J Pharm 159: 181–189.CrossRefGoogle Scholar
  46. Sakuma, S., R. Sudo, et al. (1999). Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract. Int J Pharm 177(2): 161–72.PubMedCrossRefGoogle Scholar
  47. Sakuma, S., R. Sudo, et al. (2002). Behavior of mucoadhesive nanoparticles having hydrophilic polymeric chains in the intestine. J Control Release 81(3): 281–90.PubMedCrossRefGoogle Scholar
  48. Sarmento, B., A. Ribeiro, et al. (2007a). Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8(10): 3054–60.PubMedCrossRefGoogle Scholar
  49. Sarmento, B., A. Ribeiro, et al. (2007b). Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24(12): 2198–206.PubMedCrossRefGoogle Scholar
  50. Soma, C. E., C. Dubernet, et al. (1999). Ability of doxorubicin-loaded nanoparticles to overcome multidrug resistance of tumor cells after their capture by macrophages. Pharm Res 16(11): 1710–6.PubMedCrossRefGoogle Scholar
  51. Soppimath, K. S., T. M. Aminabhavi, et al. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2): 1–20.PubMedCrossRefGoogle Scholar
  52. Takeuchi, H., H. Yamamoto, et al. (2001). Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv Drug Deliv Rev 47(1): 39–54.PubMedCrossRefGoogle Scholar
  53. Uchegbu, I. F. and A. G. Schätzlein (2006). Polymers in drug delivery. Boca Raton, London, New York, Taylor & Francis Group LLC.CrossRefGoogle Scholar
  54. Vauthier, C., S. Beanabbou, et al. (1991). Methodology of ultradispersed polymer system. S.T.P. Pharm. Sci. 1: 109–116.Google Scholar
  55. Vauthier, C., C. Dubernet, et al. (2003). Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 93(2): 151–60.PubMedCrossRefGoogle Scholar
  56. Vila, A., A. Sanchez, et al. (2002). Design of biodegradable particles for protein delivery. J Control Release 78(1–3): 15–24.PubMedCrossRefGoogle Scholar
  57. Yang, S. C., H. X. Ge, et al. (2000). Formation of positively charged poly(butyl cyanoacrylate) nanoparticles stabilized with chitosan. Colloid Polym. Sci. 278: 285–292.CrossRefGoogle Scholar
  58. Zheng, F., X.-W. Shi, et al. (2007). Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: Results of an in vitro and in vivo study. Life Sci. 80: 388–396.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pharmaceutical TechnologyLeopold-Franzens-University Innsbruck, Innrain 52InnsbruckAustria
  2. 2.Institute of Pharmacy, University of Innsbruck, InnsbruckInnsbruckAustria

Personalised recommendations