Advertisement

Gastrointestinal Mucus Gel Barrier

  • Juan Perez-VilarEmail author
Chapter

Abstract

A family of glycoproteins, known as gel-forming mucins, endow gastrointestinal mucus with its characteristic viscoelastic and biological properties. In the mucus, these large oligomeric glycoproteins are organized into entangled networks that occasionally can be stabilized by non-covalent interactions as in the stomach lumen. This network is a formidable chemical and physical barrier that not only protects the underlying epithelia but also limits the usefulness of orally administered drugs. In this chapter, I review the molecular and cellular properties of gel-forming mucins and how these macromolecules are organized into a tri-dimensional network to form the gastrointestinal mucus gel barrier.

Keywords

Gastric Mucus COOH Terminus Entangle Network Mucus Barrier Mucin Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author’s studies mentioned in this review were supported by grants from the University of North Carolina Research Council, the North American Cystic Fibrosis Foundation, and the National Institute of Heath (NIDDK).

References

  1. Allen A. and Flemstrom G. (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 288, C1–C19PubMedGoogle Scholar
  2. Atuma C., Strugala V., Allen A. and Holm L. (2001) The adherent gastrointestinal mucus gel layer:thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280,G922–G929PubMedGoogle Scholar
  3. Bansil R., Stanley E. and LaMont J.T. (1995). Mucin biophysics. Annu Rev Physiol. 57, 635–657PubMedCrossRefGoogle Scholar
  4. Bansil R. and Turner B.S. (2006). Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interf Sci. 11, 164–170CrossRefGoogle Scholar
  5. Bell S.L., Xu G., Khatri I.A., Wang R., Rahman S. and Forstner J.F. (2003). N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem J. 373, 893–900PubMedCrossRefGoogle Scholar
  6. Bernkop-Schnürch A. and Fragner R. (1996) Investigations into the diffusion behavior of polypeptides in native intestinal mucus with regard to their peroral administration. Pharmaceutical Sci 2, 361–363Google Scholar
  7. Bernkop-Schnürch A., Valenta C. and Daee S.M. (1999) Peroral polypeptide delivery. A comparative in vitro study of mucolytic agents. Arzneimittelforschung 49, 799–803PubMedGoogle Scholar
  8. Bhaskar K.R., Gank P., Turner B.S., Bradley, J.D., Bansil R., Stanley H.E. and LaMont J.T. (1992). Viscous fingering of HCl through gastric mucin. Nature 360, 458–461PubMedCrossRefGoogle Scholar
  9. Bi L.C. and Kaunitz J.D. (2003) Gastroduodenal mucosal defense: an integrated protective response. Curr Opin Gastroenterol. 19, 526–532PubMedCrossRefGoogle Scholar
  10. Bradbury N.A. (2000) Protein kinase A-mediated secretion of mucin from human colonic epithelial cells. J Cell Physiol 185, 408–415PubMedCrossRefGoogle Scholar
  11. Brockhausen I. (2003). Sulphotransferases acting on mucin-type oligosaccharides. Biochem Soc Trans. 31, 318–325PubMedCrossRefGoogle Scholar
  12. Bromberg L.E. and Barr D.P. (2000) Sel-association of Mucin. Biomacromolecules 1, 325–334PubMedGoogle Scholar
  13. Burgoyne R.D. and Morgan A. (2003). Secretory granule exocytosis. Physiol Rev. 83, 581–632PubMedGoogle Scholar
  14. Cao X., Bansil R., Bhaskar K.R., Turner B.S., LaMont J. T., Niu N. and Afdhal N.H. (1999). pH-dependent conformational change of gastric mucin leads to sol-gel transition. Biophys J. 76, 1250–1258PubMedCrossRefGoogle Scholar
  15. Celli J., Gregor B., Turner B., Afdhal N.H., Bansil R. and Erramilli S. (2005) Viscoelastic Properties and Dynamics of Porcine Gastric mucin. Biomacromolecules 6, 1329–1333PubMedCrossRefGoogle Scholar
  16. Chen Y., Zhao Y. H., Kalaslavadi T.B., Hamati E., Nehrke K., Le A.D., Ann D.K. and Wu R. (2004). Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. A J Respir Cell Mol Biol. 30, 155–165CrossRefGoogle Scholar
  17. Chin W.C., Quesada I., Nguyen T. and Verdugo P. (2002). Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal transduction in goblet cell exocytosis. Novartis Found Symp. 248, 132–141PubMedCrossRefGoogle Scholar
  18. Corfield A.P., Wagner S.A., O’Donnell L.J., Durdey P., Mountford R.A. and Clamp J.R. (1993) The roles of enteric bacterial sialidase, sialate O-acetyl esterase and glycosulfatase in the degradation of human colonic mucin. Glycoconj J 10, 72–81PubMedCrossRefGoogle Scholar
  19. Dawson M., Wirtz D. and Hanes J. (2003) Enhanced viscoelasticity of human cystic fibrosic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem. 278, 50393–50401PubMedCrossRefGoogle Scholar
  20. De Gennes P.G. (1979) Scaling concepts in polymer physics. USA: Cornell University PressGoogle Scholar
  21. Dekker J., Rossen J.W., Buller H.A. and Einerhand, A.W. (2002). The MUC family: an obituary. Trends Biochem Sci. 27, 126–131PubMedCrossRefGoogle Scholar
  22. Deplancke B. and Gaskins H.R. (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73, 1131S–1141SPubMedGoogle Scholar
  23. Desai M.A., Mutlu M. and Vadgama P. (1992) A Study of Macromolecular Diffusion through Native Porcine Mucus. Experientia 48, 22–26PubMedGoogle Scholar
  24. Dessein J.L., Guyonnet-Duperat V., Porchet N., Aubert J.P. and Laine A. (1997). Human mucin gene MUC5B., the 10.7 kb large central exon encodes various alternate subdomains resulting in a super-repeat. Structural evidence for a 11p15.5 gene family. J Biol Chem. 272, 3168–3178CrossRefGoogle Scholar
  25. Doi M. and See H. Introduction to polymer physics. USA: Oxford University Press; 1995Google Scholar
  26. Eckhardt A.E., Timpte C.S., Abernethy J.L., Toumadje A., Johnson W.C. and Hill R.L. (1987). Structural properties of porcine submaxillary mucin. J Biol Chem. 262, 11339–11344Google Scholar
  27. Eckhardt A.E., Timpte C.S., Abernethy J.L., Zhao Y. and Hill R.L. (1991). Porcine submaxillary mucin contains a cystine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J Biol Chem. 266, 9678–9686PubMedGoogle Scholar
  28. Ehre C., Zhu Y., Abdullah L.H., Olsen J., Nakayama K.I., Nakayama K., Messing R.O. and Daviss C.W. (2007) nPKCε, a P3Y2-R downstream effector in regulated mucin secretion from airway goblet cells. Am J Physiol Cell Physiol 293, C1445–C1454PubMedCrossRefGoogle Scholar
  29. El Homsi M., Ducroc R., Claustre J., Jourdan G., Gertler A., Estienne M., Bado A., Scoazec J.Y. and Plaisancie P. (2007) Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI#K, and MAP.K. Am J Physiol Gastrointest Liver Physiol 293,G365–G373PubMedCrossRefGoogle Scholar
  30. Escande F., Aubert J.P., Porchet N. and Buisine M.P. (2001). Human mucin gene MUC5AC: organization of its 5’-region and central repetitive region. Biochem J. 358, 763–772PubMedCrossRefGoogle Scholar
  31. Flemstrom G., Hallgren A., Nylander O., Engstrans L., Wilander E. and Allen A. (1999) Adherent surface mucus gel restricts diffusion of macromolecules in rat duodenum in vivo. Am J Physiol Gastrointest Liver Physiol 277, 375–382Google Scholar
  32. Forstner G. (1995) Signal transduction, packaging and secretion of mucins. Annu Rev Physiol 57, 585–605PubMedCrossRefGoogle Scholar
  33. Gerken T.A. (1993) Biophysical approaches to salivary mucin structure, conformation and dynamics. Crit Rev Oral Biol Med 4, 261–270PubMedGoogle Scholar
  34. Gold K., Johansson M.E., Lidell M.E., Morgelin M., Karlsson H., Olson F. J., Gum J.R., Kim, Y.S. and Hansson G.C. (2002). The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J Biol Chem. 277, 47248–47256CrossRefGoogle Scholar
  35. Graessley W.W. (2004) Polymeric liquids and networks: structure and properties. USA: Garland SciencesGoogle Scholar
  36. Ham M. and Kaunitz J.D. (2007) Gastroduodenal defense. Curr Opin Gastroentrol 23, 607–616CrossRefGoogle Scholar
  37. Hidaka E., Ota H. and Hidaka H. (2001) Helicobacter pylori and two ultrastructurally distinct layers of gastric mucous cell mucins in the surface mucous gel layer. Gut 49, 474–480PubMedCrossRefGoogle Scholar
  38. Hong D.H., Forstner J. and Forstner G. (1997) Protein kinase C-ε is the likely mediator of mucin exocytosis in human colonic cell lines. Am J Physiol Gastrointest Liver Physiol 272,G31–G37Google Scholar
  39. Hong D.H., Petrovics G., Anderson W.B., Forstner J. and Forstner G. (1999) Induction of mucin gene expression in human colonic cell lines by PMA is dependent on PKC-ε. Am J Physiol Gastrointest Liver Physiol 277,G1041–G1047Google Scholar
  40. Hong Z., Chasan B., Bansil R., Turner B.S., Bhaskar K.R. and Afdhal N.H. (2005) Atomic force microscopy reveals aggregation of gastric mucin at low pH. Biomacromolecules 6, 3458–3466PubMedCrossRefGoogle Scholar
  41. Jentoft N. (1991) Why are proteins O-glycosylated?. Trends Biochem Sci. 15, 291–294CrossRefGoogle Scholar
  42. Kawakubo M., Ito Y., Okimura Y., Kobayashi M., Sakura K., Kasama S., Fukuda M.N., Fukuda M., Katsuyama T. and Nakayama J. (2004). Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 305, 1003–1006PubMedCrossRefGoogle Scholar
  43. Klein A. and Roussel P. (1998) O-Acetylation of sialic acids. Biochimie 80, 49–57PubMedCrossRefGoogle Scholar
  44. Kuver R., Klinkspoor J.H., Osborne W.R.A. and Lee S.P. (2000) Mucous granule exocytosis and CFTR expression in gallbladder epithelium. Glycobiology 10, 149–157PubMedCrossRefGoogle Scholar
  45. Lai S.K., O’Hanlon E., Harrold S., Man S.T., Wang Y-Y., Cone R. and Hanes J. (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 104, 1482–1487PubMedCrossRefGoogle Scholar
  46. Lang T., Alexandersson M., Hansson GC and Samuelsson T. (2004). Bioinformatic identification of polymerizing and transmembrane mucins in the puffer fish Fugu rubripes. Glycobiology 14, 521–527PubMedCrossRefGoogle Scholar
  47. Lang T., Hansson G.C. and Samuelsson T. (2007) Gel-forming mucins appeared early in metazoan evolution. Proc Natl Acad Sci USA 104, 16209–16214PubMedCrossRefGoogle Scholar
  48. Larhed A.W., Artursson P. and Bjork E. (1998) The influence of intestinal mucus components on the diffusion of drugs. Pharm Res 15, 66–71CrossRefGoogle Scholar
  49. Larhed A.W., Artursson P., Grasjo J. and Bjork E. (1997) Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci 86, 660–665PubMedCrossRefGoogle Scholar
  50. Li Y. and Tanaka T. (1992). Volume phase transitions of gels. Annu Rev Mater Sci. 22, 243–277CrossRefGoogle Scholar
  51. Li Y., Martin L.D., Spizz G. and Adler K.B. (2001). MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J Biol Chem. 276, 40982–40990PubMedCrossRefGoogle Scholar
  52. Lidell M.E., Johansson M.E. and Hansson G.C. (2003). An autocatalytic cleavage in the C terminus of the human MUC2 mucin occurs at the low pH of the late secretory pathway. J Biol Chem. 278, 13944–13951PubMedCrossRefGoogle Scholar
  53. Lidell M.E. and Hansson G.C. (2006) Cleavage in the GDPH sequence of the C-terminal cysteine-rich part of the human MUC5AC mucin. Biochem J. 399, 121–129PubMedCrossRefGoogle Scholar
  54. Lidell M.E., Moncada D.M., Chadee K. and Hansson G.C. (2006). Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc Natl Acad Sci U S A. 103, 9298–9303PubMedCrossRefGoogle Scholar
  55. Lievin-Le Moal V. and Servin A.L. (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19, 315–337PubMedCrossRefGoogle Scholar
  56. Lin J., Haruta A., Kawano H., Ho S.B., Adams G.L., Juhn S.K. and Kim Y. (2000) Induction of mucin gene expression in middle ear of rats by tumor necrosis factor-alpha: potential cause for mucoid otitis media. J Infect Dis 182, 882–887PubMedCrossRefGoogle Scholar
  57. Madsen F., Eberth K. and Smart J.D. (1998) A Rheological examination of the Mucoadhesive/Mucus Interaction; the Effect of Mucoadhesive Type and Concetration. J. Control Release 50, 167–178PubMedGoogle Scholar
  58. Matsui H., Wagner V.E., Hill D.B., Schwab U.E., Rogers T.D., Buttom B., Taylor R.M., Superfine R., Rubinstein M., Iglewski R.H. and Boucher R.C. (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 103, 18131–18136PubMedCrossRefGoogle Scholar
  59. McCool D.J., Forstner J.F. and Forstner G.G. (1995) Regulated and unregulated pathways for MUC2 mucin secretion in human colonic LS180 adenocarcinoma cells are distinct. Biochem J 312, 125–133PubMedGoogle Scholar
  60. McCool D.J., Okada Y., Forstner J.F. and Forstner G.G. (1999) Roles of calreticulin and calnexin during mucin synthesis in LS180 and HT29/A1 human colonic adenocarcinoma cells. Biochem J 341, 593–600PubMedCrossRefGoogle Scholar
  61. Meitinger T., Meindl A., Bork P., Rost B. and Hassemann M.M. (1993) Molecular modeling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat Genet 5, 376–380PubMedCrossRefGoogle Scholar
  62. Miyake K., Tanaka T. and McNeil P.L. (2006) Disruption-induced mucus secretion: repair and protection. PLoS Biol 4, e276PubMedCrossRefGoogle Scholar
  63. Neutra M.R., Phillips T.L. and Phillips T.E. (1984). Regulation of intestinal goblet cells in situ, in mucosal explants and in the isolated epithelium. Ciba Found. Symp. 109, 20–39PubMedGoogle Scholar
  64. Nguyen T., Chin W-C. and Verdugo P. (1998). Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature 395, 908–912PubMedCrossRefGoogle Scholar
  65. Nochi T. and Kiyono H. (2006) Innate immunity in the mucosal immune system. Current Pharmaceutical Design 12,4203–4213PubMedCrossRefGoogle Scholar
  66. Noiva R. (1994) Enzymatic catalysis of disulfide formation. Protein Expr Purif. 5, 1–13PubMedCrossRefGoogle Scholar
  67. Olmsted S.S., Padgett J.L., Yudin A.I., Whaley K.J., Moench T.R. and Gone R.A. (2001) Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 81, 1930–1937PubMedCrossRefGoogle Scholar
  68. Otte J.M., Kiehne K. and Herzig K.H. (2003) Antimicrobial peptides in innate immunity of the human intestine. J Gastoenterol 38, 717–726CrossRefGoogle Scholar
  69. Otto W.R. and Thim L. (2005) Trefoil factor family-interacting proteins. Cell Mol Life Sci. 62, 2939–2946PubMedCrossRefGoogle Scholar
  70. Park J.A., Crews A.L., Lampe W.R., Fang S., Park J. and Adler K.B. (2007) Protein kinase Cδ regulates airway mucin secretion via phosphorylation of MARCKS protein. Am J Pathol. 171, 1822–1830PubMedCrossRefGoogle Scholar
  71. Perez-Vilar J., Eckhardt, A.E. and Hill R.L. (1996). Porcine submaxillary mucin forms disulfide-bonded dimers between its carboxyl-terminal domains. J Biol Chem. 271, 9845–9850PubMedCrossRefGoogle Scholar
  72. Perez-Vilar J. and Hill R.L. (1997). Norrie disease protein (norrin) forms disulfide-linked oligomers associated with the extracellular matrix. J Biol Chem 272, 33410–33415PubMedCrossRefGoogle Scholar
  73. Perez-Vilar J., Eckhardt, A.E., DeLuca A. and Hill R.L. (1998). Porcine submaxillary mucin forms disulfide-linked multimers through its amino-terminal D domains. J Biol Chem. 273, 14442–14449PubMedCrossRefGoogle Scholar
  74. Perez-Vilar J. and Hill R.L. (1998a). The carboxyl-terminal 90 residues of porcine submaxillary mucin are sufficient for forming disulfide-bonded dimers. J Biol Chem 273, 6982–6988PubMedCrossRefGoogle Scholar
  75. Perez-Vilar J. and Hill R.L. (1998b). Identification of the half-cystine residues in porcine submaxillary mucin critical for multimerization through the D-domains. Roles of the CGLCG motif in the D1 and D3-domains. J Biol Chem 273, 34527–34534PubMedCrossRefGoogle Scholar
  76. Perez-Vilar J. and Hill R.L. (1999). The structure and assembly of secreted mucins. J Biol Chem 274, 31751–31754PubMedCrossRefGoogle Scholar
  77. Perez-Vilar J. and Boucher R.C. (2004). Mucins form disulfide-linked multimers through a self-catalyzed pH-dependent mechanism. Pediatr Pulmonol. 38, 238(144)Google Scholar
  78. Perez-Vilar J., Randell S.H. and Boucher R.C. (2004). C-Mannosylation of MUC5AC and MUC5B Cys subdomains. Glycobiology 4, 325–337CrossRefGoogle Scholar
  79. Perez-Vilar J., Olsen J.C., Chua M. and Boucher R.C. (2005a). pH-dependent intraluminal organization of mucin granules in live human mucous/goblet cells. J. Biol. Chem. 280, 16868–16881PubMedCrossRefGoogle Scholar
  80. Perez-Vilar J., Ribeiro C.M., Salmon W.C., Mabolo R. and Boucher R.C. (2005b). Mucin granules are in close contact with tubular elements of the endoplasmic reticulum. J Histochem Cytochem. 53, 1305–1309PubMedCrossRefGoogle Scholar
  81. Perez-Vilar J., Mabolo R. McVaugh C.T., Bertozzi C.R. and Boucher R.C. (2006). Mucin granule intraluminal organization in living mucous/goblet cells. Roles of protein post-translational modifications and secretion. J Biol Chem. 281, 4844–4855PubMedCrossRefGoogle Scholar
  82. Perez-Vilar J. (2007). Mucin granule intraluminal organization. Am J Respir Cell Mol Biol, 36, 183–190PubMedCrossRefGoogle Scholar
  83. Perez-Vilar J. and Mabolo R. (2007) Gel-forming Mucins. Notions from in vitro studies. Histol Histopathol. 22 455–464PubMedGoogle Scholar
  84. Perez-Vilar J. (2008) Formation of Mucin Granules. In “The Golgi Apparatus. State of the Art 110 years After Camilo Golgi’s Discovery” (Mironov A. & Pavelka M., eds.) Springer-Verlag, Viena/New York, pp. 535–562.Google Scholar
  85. Plisancie P., Ducroc R., El Homsi M., Tsocas A., Guilmeau S., Zoghbi S., Thibaudeau O. and Bado A. (2006) Luminal: eptin Activates mucin-secreting Goblet Cells in the Large Bowel. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G805–G812PubMedCrossRefGoogle Scholar
  86. Raynal B.D., Hardingham T.E., Thornton D.J. and Sheehan J.K. (2002) Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva. Biochem J. 362, 289–296PubMedCrossRefGoogle Scholar
  87. Raynal B.D., Hardingham T.E., Sheehan J.K. and Thornton D.J. (2003). Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus. J Biol Chem. 278, 28703–28710PubMedCrossRefGoogle Scholar
  88. Rose M.C., Voter W.A., Sage H., Brown C.F. and Kaufman, B. (1984). Effects of deglycosylation on the architecture of ovine submaxillary mucin glycoprotein. J Biol Chem. 259, 3167–3172PubMedGoogle Scholar
  89. Roth J., Wang Y., Eckhardt A.E. and Hill R.L. (1994). Subcellular localization of the UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. Proc Natl Acad Sci USA 91, 8935–8939PubMedCrossRefGoogle Scholar
  90. Rousseau K., Byrne C., Kim Y.S., Gum J.R., Swallow D.M. and Toribara N.W. (2004). The complete genomic organization of the human MUC6 and MUC2 mucin genes. 83 936–939Google Scholar
  91. Ruchaud-Sparagano M.H., Westley B.R. and May F.E. (2004) The threfoil protein TFF1 is bound to MUC5AC in human gastric mucosa. Cell Mol Life Sci 61, 1946–1954PubMedCrossRefGoogle Scholar
  92. Sadler J.E. (1998). Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67, 395–424PubMedCrossRefGoogle Scholar
  93. Saltzman W.M., Radomsky M.L., Whaley K.J. and Cone R.A. (1994) Antibody diffusion in human cervical mucus. Biophys J 66, 508–515PubMedCrossRefGoogle Scholar
  94. Shen H., Hu Y. and Saltzman W.M. (2006) DNA diffusion in mucus: effect of size, topology of DNAs, and transfection reagents. Biophys J 91, 639–644PubMedCrossRefGoogle Scholar
  95. Shogren R., Gerken T.A. and Jentoft N. (1989) Role of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: light-scattering studies of ovine submaxillary mucin. Biochemistry 28, 5525–5536PubMedCrossRefGoogle Scholar
  96. Slayter H.S., Lamblin G., LeTreut A., Galabert C., Houdret N., Degand P. and Roussel P. (1984) Complex Structure of Human Bronchial Mucus Glycoprotein. Eur. J. Biochem. 142, 209–218PubMedGoogle Scholar
  97. Slomiany B.L. and Slomiany A. (2002) Disruption in gastric mucin synthesis by Helicobacter pylori lipopolysaccharide involves ERK and P38 mitogen-activated protein kinase participation. Biochem Biophys Res Commun 294, 220–224PubMedCrossRefGoogle Scholar
  98. Snapp E., Altan N. and Lippincott-Schwartz J. (2003) Fluorescence Recovery After Photobleaching. In Current Protocols in Cell Biology. (Bonifacino, J., Dasso, M., Harford, J., Lippincott-Schwartz, J., Yamada K., Morgan K.S., eds.) Unit 21.1 John Wiley & Sons, Inc., New YorkGoogle Scholar
  99. Spiro R.G. (2002). Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56RPubMedCrossRefGoogle Scholar
  100. Strous G.J. and Dekker J. (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27, 57–92PubMedCrossRefGoogle Scholar
  101. Sun P.D. and Davies D.R. (1995). The cystine-knot growth-factor superfamily. Annu Rev Biophys. Biomol. Struct. 24, 269–291PubMedCrossRefGoogle Scholar
  102. Thim L., Madsen F. and Poulsen S.S. (2002) Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur J Clin Invest 32, 519–527PubMedCrossRefGoogle Scholar
  103. Tomasetto C., Masson R., Linares J.L., Wendling C., Levebvre O. and Chenard M.P. (2000) pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology 118, 70–80PubMedCrossRefGoogle Scholar
  104. Van der Sluis M., De Koning B.A., De Bruijin A.C., Velcich A., Meijerink J.P., Van Goudoever J.B., Buller H.A., Dekker J., Van Seuginen I., Renes I.B. and Einerhand A.W. (2006). Muc2-2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129PubMedCrossRefGoogle Scholar
  105. Velcich A., Yang W., Heyer J., Fragale A., Nicholas C., Viani S., Kucherlapati R., Lipkin M., Yang K. and Augenlicht L. (2002). Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729PubMedCrossRefGoogle Scholar
  106. Veerman E.C., Van den Keijbus P.A., Nazmi K., Vos W., Van der Wal J.E., Bloemena E.J.G. and Amerongen A.V. (2003). Distinct localization of MUC5B glycoforms in the human salivary glands. Glycobiology 13, 363–366PubMedCrossRefGoogle Scholar
  107. Verdugo P. (1990). Goblet cells secretion and mucogenesis. Annu Rev Physiol 52, 157–176PubMedCrossRefGoogle Scholar
  108. Verdugo P. (1991). Mucin exocytosis. Am Rev Respir Dis 144, S33–S37PubMedGoogle Scholar
  109. Vinall L.E., Pratt W.S. and Swallow D.M. (2000). Detection of mucin gene polymorphism. Methods Mol Biol 125, 337–350PubMedGoogle Scholar
  110. Wickstrom C. and Carlstedt I. (2001). N-terminal cleavage of the salivary MUC5B mucin. Analogy with the Von Willebrand propolypeptide?. J. Biol. Chem. 276, 47116–47121PubMedCrossRefGoogle Scholar
  111. Yakubov G.E., Papagiannopoulos A., Rat E., Easton R.L. and Waigh T.A. (2007) Molecular structure and rheological properties of short-side-chain heavily glycosylated porcine stomach mucin. Biomacromolecules 8, 3467–3477PubMedCrossRefGoogle Scholar
  112. Zen Y., Harada K., Sasaki M., Tsuneyama K., Katayanagi K., Yamamoto Y. and Nakanuma Y. (2002) Lipopolysaccharide induces overexpression of MUC2 and MUC5AC in cultured biliary epithelial cells. Am J Pathol 161, 1475–1484PubMedCrossRefGoogle Scholar
  113. Zoghi S., Trompette K., Claustre J., El Homsi M., Garzon J., Jourdan G., Scoazee J.Y. and Plaisancie P. (2006) β–Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a μ-opioid pathway. Am J Physiol Gastrointes Liver Physiol 290, G1105–G1113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Cystic Fibrosis/Pulmonary Research and Treatment CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations