Oral Delivery of Nucleic Acid Drugs

  • Ronny MartienEmail author


Nucleic acid molecules have emerged as versatile tools with promising utility in a variety of biochemical, diagnostic, and therapeutic applications. A parenteral administration of a nucleic acid is inconvenient because of pain, fear, and risks being associated with this type of application. The intestinal epithelium is considered to be an attractive site for oral delivery of therapeutic genes.

The successful development of oral nucleic acid delivery systems is challenged by a variety of barriers encountered with the GI tract. The intestinal mucosa is both a physical and a biochemical barrier, separating the external environment from the internal milieu of the body.

Despite the enormous potential of gene therapy, safe and efficient delivery of nucleic acid into cells is still a dominant task in current biotechnological research. The majority of nucleic acid therapeutics are to a higher degree dependent on delivery systems for successful therapeutic intervention than conventional drugs.

Regarding safety concerns, non-viral gene delivery vehicles that have the required efficiency and safety for use in human gene therapy are being widely investigated as possible alternatives. Non-viral systems show a significantly lower safety risk and can be tailored to specific therapeutic needs.


Antisense Oligonucleotide Oral Delivery Permeation Enhancer Methyl Phosphonates Sigmoid Colon Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agrawal, S., X. Zhang, Z. Lu, H. Zhao, J. M. Tamburin, J. Yan, H. Cai, R. B. Diasio, I. Habus and Z. Jiang (1995). Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochem Pharmacol 50(4): 571–6.PubMedCrossRefGoogle Scholar
  2. Audouy, S., G. Molema, L. de Leij and D. Hoekstra (2000). Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med 2(6): 465–76.PubMedCrossRefGoogle Scholar
  3. Bernkop-Schnurch, A., C. E. Kast and D. Guggi (2003). Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release 93(2): 95–103.PubMedCrossRefGoogle Scholar
  4. Bernkop-Schnurch, A., A. H. Krauland, V. M. Leitner and T. Palmberger (2004). Thiomers: potential excipients for non-invasive peptide delivery systems. Eur J Pharm Biopharm 58(2): 253–263.PubMedCrossRefGoogle Scholar
  5. Bernkop-Schnurch, A., H. Zarti and G. F. Walker (2001). Thiolation of polycarbophil enhances its inhibition of intestinal brush border membrane bound aminopeptidase N. J Pharma Sci 90(11): 1907–1914.CrossRefGoogle Scholar
  6. Borges, O., G. Borchard, J. C. Verhoef, A. de Sousa and H. E. Junginger (2005). Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 299(1–2): 155–166.PubMedCrossRefGoogle Scholar
  7. Crooke, S. T. (1998). An overview of progress in antisense therapeutics. Antisense Nucleic Acid Drug Dev 8(2): 115–22.PubMedCrossRefGoogle Scholar
  8. El Ouahabi, A., M. Thiry, V. Pector, R. Fuks, J. M. Ruysschaert and M. Vandenbranden (1997). The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett 414(2): 187–92.PubMedCrossRefGoogle Scholar
  9. Elbashir, S.M., J. Harborth, W. Lendeckel, A. Yalcin, K. Weber and T. Tuschl (2001). Duplexes of 21-nucleotide RNAs mediate RNA inerference in cultured mammalian cells. Nature 411: 494–498.PubMedCrossRefGoogle Scholar
  10. Ellington, A.D. and J. Szostak (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.PubMedCrossRefGoogle Scholar
  11. Ess, K.C., J.J. Hutton and B.J. Aronow (1994). Double-stranded phosphorothioate oligonucleotide modulation of gene expression. Ann New York Acad Sci 716: 321–332.CrossRefGoogle Scholar
  12. Fasano, A. (1998). Novel approaches for oral delivery of macromolecules. J Pharm Sci 87(11): 1351–6.PubMedCrossRefGoogle Scholar
  13. Fire, A., S. Q. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver and C. C. Mello (1998). Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.PubMedCrossRefGoogle Scholar
  14. Fraunhofer, W., G. Winter and C. Coester (2004). Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Anal Chem 76(7): 1909–20.PubMedCrossRefGoogle Scholar
  15. Gardlik, R., R. Palffy, J. Hodosy, J. Lukacs, J. Turna and P. Celec (2005). Vectors and delivery systems in gene therapy. Med Sci Monit 11(4): RA110–21.PubMedGoogle Scholar
  16. Guerrier, T. C., K. Gardiner, T. Marsh, N. Pace and S. Altman (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857.CrossRefGoogle Scholar
  17. Guggi, D., N. Langoth, M. H. Hoffer, M. Wirth and A. Bernkop-Schnurch (2004). Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate. Int J Pharm 278(2): 353–360.PubMedCrossRefGoogle Scholar
  18. Hacein-Bey-Abina, S., C. von Kalle, M. Schmidt, F. Le Deist, N. Wulffraat, E. McIntyre, I. Radford, J. L. Villeval, C. C. Fraser, M. Cavazzana-Calvo and A. Fischer (2003). A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348(3): 255–6.PubMedCrossRefGoogle Scholar
  19. Ishizawa, T., M. Hayashi and S. Awazu (1987). Enhancement of jejunal and colonic absorption of fosfomycin by promoters in the rat. J Pharm Pharmacol 39: 892–895.PubMedCrossRefGoogle Scholar
  20. Johnston, S. A., A. M. Talaat and M. J. McGuire (2002). Genetic immunization: what’s in a name? Arch Med Res 33(4): 325–9.PubMedCrossRefGoogle Scholar
  21. Kai, E. and T. Ochiya (2004). A method for oral DNA delivery with N-acetylated chitosan. Pharmaceutical Res 21(5): 838–843.CrossRefGoogle Scholar
  22. Kataoka, K. (1998). [Intracellular gene delivery by polymer micelle vectors]. Nippon Rinsho 56(3): 718–23.PubMedGoogle Scholar
  23. Katayose, S. and K. Kataoka (1997). Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug Chem 8(5): 702–7.PubMedCrossRefGoogle Scholar
  24. Kurreck, J., E. Wyszko, C. Gillen and V. A. Erdmann (2002). Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30(9): 1911–8.PubMedCrossRefGoogle Scholar
  25. Lampela, P., J. Raisanen, P. T. Mannisto, S. Yla-Herttuala and A. Raasmaja (2002). The use of low-molecular-weight PEIs as gene carriers in the monkey fibroblastoma and rabbit smooth muscle cell cultures. J Gene Med 4: 205–214.PubMedCrossRefGoogle Scholar
  26. Lindmark, T., J. Soderholm, G. Olaison, G. Alvan, G. Ocklind and P. Artursson (1997). Mechanism of absorption enhancement in humans after rectal administration of ampicillin in suppositories containing sodium caprate. Pharm Res 14: 930–935.PubMedCrossRefGoogle Scholar
  27. Loretz, B., F. Foger, M. Werle and A. Bernkop-Schnurch (2006). Oral gene delivery: Strategies to improve stability of pDNA towards intestinal digestion. J Drug Target 14(5): 311–9.PubMedCrossRefGoogle Scholar
  28. Lundstrom, K. and T. Boulikas (2003). Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2: 471–86.PubMedGoogle Scholar
  29. Ma, H. and S. L. Diamond (2001). Nonviral gene therapy and its delivery systems. Curr Pharm Biotechnol 2(1): 1–17.PubMedCrossRefGoogle Scholar
  30. Ma, T., D. Hollander, D. Bhalla, H. Nguyen and P. Krugliak (1992). IEC-18, a nontransformed small intestinal cell line for studying epithelial permeability. J Lab Clin Med 120: 329–341.PubMedGoogle Scholar
  31. Mansouri, S., Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont and J. C. Fernandes (2006). Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27(9): 2060–2065.PubMedCrossRefGoogle Scholar
  32. Martien, R., B. Loretz, A.M. Sandbichler and Bernkop Schnürch A (2008). Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture. Nanotechnology 19: 045101 (9 pp).PubMedCrossRefGoogle Scholar
  33. Martien, R., B. Loretz, M. Thaler, S. Majzoob and A. Bernkop-Schnurch (2007). Chitosan-thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res A 82(1): 1–9.PubMedGoogle Scholar
  34. Mastrobattista, E., W. E. Hennink and R. M. Schiffelers (2007). Delivery of nucleic acids. Pharm Res 24(8): 1561–3.PubMedCrossRefGoogle Scholar
  35. Mastrobattista, E., M. A. van der Aa, W. E. Hennink and D. J. Crommelin (2006). Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov 5(2): 115–21.PubMedCrossRefGoogle Scholar
  36. Merdan, T., J. Kopecek and T. Kissel (2002). Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54(5): 715–58.PubMedCrossRefGoogle Scholar
  37. Mestecky, J. (1987). The common mucosal immune-system and current strategies for induction of immune-responses in external secretions. J Clin Immunol 7(4): 265–276.PubMedCrossRefGoogle Scholar
  38. Newman, C. M., A. Lawrie, A. F. Brisken and D. C. Cumberland (2001). Ultrasound gene therapy: on the road from concept to reality. Echocardiography 18(4): 339–47.PubMedCrossRefGoogle Scholar
  39. Patil, S. D., D. G. Rhodes and D. J. Burgess (2005). DNA-based therapeutics and DNA delivery systems: a comprehensive review. Aaps J 7(1): E61–77.PubMedCrossRefGoogle Scholar
  40. Raoof, A. A., P. Chiu, Z. Ramtoola, I. K. Cumming, C. Teng, S. P. Weinbach, G. E. Hardee, A. A. Levin and R. S. Geary (2004). Oral bioavailability and multiple dose tolerability of an antisense oligonucleotide tablet formulated with sodium caprate. J Pharm Sci 93(6): 1431–9.PubMedCrossRefGoogle Scholar
  41. Raoof, A. A., Z. Ramtoola, B. McKenna, R. Z. Yu, G. Hardee and R. S. Geary (2002). Effect of sodium caprate on the intestinal absorption of two modified antisense oligonucleotides in pigs. Eur J Pharm Sci 17(3): 131–8.PubMedCrossRefGoogle Scholar
  42. Raper, S. E., N. Chirmule, F. S. Lee, N. A. Wivel, A. Bagg, G. P. Gao, J. M. Wilson and M. L. Batshaw (2003). Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80(1–2): 148–58.PubMedCrossRefGoogle Scholar
  43. Riordan, M.L and J. C. Martin (1991). Oligonucleotide based therapeutics. Nature 350: 442–443.CrossRefGoogle Scholar
  44. Rubanyi, G. M. (2001). The future of human gene therapy. Mol Aspects Med 22(3): 113–42.PubMedCrossRefGoogle Scholar
  45. Sandberg, J. W., C. Lau, M. Jacomino, M. Finegold and S. J. Henning (1994). Improving access to intestinal stem-cells as a step toward intestinal gene-transfer. Human Gene Therapy 5(3): 323–329.PubMedCrossRefGoogle Scholar
  46. Santiago, F. S. and L. M. Khachigian (2001). Nucleic acid based strategies as potential therapeutic tools: mechanistic considerations and implications to restenosis. J Mol Med 79(12): 695–706.PubMedCrossRefGoogle Scholar
  47. Schaffer, D. V., N. A. Fidelman, N. Dan and D. A. Lauffenburger (2000). Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol Bioeng 67(5): 598–606.PubMedCrossRefGoogle Scholar
  48. Stein, C. A. (2001). The experimental use of antisense oligonucleotide: a guide for the perplexed. J Clin Invest 108: 641–644.PubMedGoogle Scholar
  49. Stull, R. A. and F. C. Szoka, Jr. (1995). Antigene, ribozyme and aptamer nucleic acid drugs: progress and prospects. Pharm Res 12(4): 465–83.PubMedCrossRefGoogle Scholar
  50. Sweetser, D. A., S. M. Hauft, P. C. Hoppe, E. H. Birkenmeier and J. I. Gordon (1988). Transgenic mice containing intestinal fatty acid-binding protein human growth-hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small-intestine. Proc Natl Acad Sci USA 85(24): 9611–9615.PubMedCrossRefGoogle Scholar
  51. Thomas, M., Q. Ge, J. J. Lu, J. Chen and A. M. Klibanov (2005). Crosslinked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm. Res 22: 373–380.PubMedCrossRefGoogle Scholar
  52. Tomlinson, E. and A. P. Rolland (1996). Controllable gene therapy – pharmaceutics of non-viral gene delivery systems. J Controlled Release 39(2–3): 357–372.CrossRefGoogle Scholar
  53. Tsutsumi, K., S. Li, A. Ghanem, N. Ho and H. WI. (2003). A systematic examination of the in vitro using chamber and the in situ single-pass perfusion model systems in rat ileum permeation of model solutes. J Pharm Sci 92: 344–359.PubMedCrossRefGoogle Scholar
  54. Uherek, C. and W. Wels (2000). DNA-carrier proteins for targeted gene delivery. Adv Drug Deliv Rev 44(2–3): 153–66.PubMedCrossRefGoogle Scholar
  55. van der Aa, M. A., E. Mastrobattista, R. S. Oosting, W. E. Hennink, G. A. Koning and D. J. Crommelin (2006). The nuclear pore complex: the gateway to successful nonviral gene delivery. Pharm Res 23(3): 447–59.PubMedCrossRefGoogle Scholar
  56. Yu, J.Y., S.L. DeRuiter and D.L. Turnner (2002). RNA interference by expression of short interferencing and hair pin RNAs in mammalian cells. Proc Natl Acad Sci 99: 6047–6052.PubMedCrossRefGoogle Scholar
  57. Zamecnik, P. C. and M. L. Stephenson (1978). Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci 75: 280–284.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pharmaceutics, Faculty of PharmacyGadjah Mada UniversitySekip UtaraIndonesia

Personalised recommendations