Strategies in Oral Immunization

  • Pavla SimerskaEmail author
  • Peter Moyle
  • Colleen Olive
  • Istvan Toth


Development of mucosal vaccine delivery system is an important area for improving public health. Oral vaccines have large implications for rural and remote populations since the access to trained medical staff to administer vaccines by injection is limited. New mucosal vaccine strategies are focused on development of non-replicating subunit vaccines, DNA, plant, and other types of recombinant vaccines. The conjugation of lipids to peptide antigens is one approach which enables the production of highly customized all-in-one self-adjuvanting vaccines. Lipid-modified peptide vaccines have been successfully investigated in humans and demonstrated to be potent and more importantly very safe.


Oral Vaccine Mucosal Vaccine Lipoamino Acid Live Vector Vaccine Lipidated Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguilar JC, Rodriguez EG (2007) Vaccine adjuvants revisited. Vaccine 25(19): 3752–3762PubMedCrossRefGoogle Scholar
  2. Ajdary S, Dobakhti F, Taghikhani M, Riazi-Rad F, Rafiei S, Rafiee-Tehrani M (2007) Oral administration of BCG encapsulated in alginate microspheres induces strong Th1 response in BALB/c mice. Vaccine 25(23): 4595–4601PubMedCrossRefGoogle Scholar
  3. Amorij JP, Westra TA, Hinrichs WLJ, Huckriede A, Frijlink HW (2007) Towards an oral influenza vaccine: Comparison between intragastric and intracolonic delivery of influenza subunit vaccine in a murine model. Vaccine 26(1): 67–76PubMedCrossRefGoogle Scholar
  4. Andrieu M, Loing E, Desoutter J-F, Connan F, Choppin J, Gras-Masse H, Hanau D, Dautry-Varsat A, Guillet J-G, Hosmalin A (2000) Endocytosis of an HIV-derived lipopeptide into human dendritic cells followed by class I-restricted CD8+ T lymphocyte activation. Eur J Immunol 30(11): 3256–3265PubMedCrossRefGoogle Scholar
  5. Ann Clark M, Blair H, Liang L, Brey RN, Brayden D, Hirst BH (2001) Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 20(1–2): 208–217CrossRefGoogle Scholar
  6. Avtushenko SS, Sorokin EM, Zoschenkova NY, Naichin AN (1996) Clinical and immunological characteristics of the emulsion form of inactivated influenza vaccine delivered by oral immunization. J Biotechnol 44(1–3): 21–28PubMedCrossRefGoogle Scholar
  7. Aziz MA, Midha S, Waheed SM, Bhatnagar R (2007) Oral vaccines: new needs, new possibilities. Bioessays 29(6): 591–604PubMedCrossRefGoogle Scholar
  8. Babiuk LA (1999) Broadening the approaches to developing more effective vaccines. Vaccine 17(13–14): 1587–1595PubMedCrossRefGoogle Scholar
  9. Baldridge JR, McGowan P, Evans JT, Cluff C, Mossman S, Johnson D, Persing DH (2004) Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Exp Op Biol Ther 4(7): 1129–1138CrossRefGoogle Scholar
  10. Baldridge JR, Yorgensen Y, Ward JR, Ulrich JT (2000) Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 18(22): 2416–2425PubMedCrossRefGoogle Scholar
  11. Batzloff MR, Hartas J, Zeng W, Jackson DC, Good MF (2006) Intranasal vaccination with a lipopeptide containing a conformationally constrained conserved minimal Peptide, a universal T cell epitope, and a self-adjuvanting lipid protects mice from group a streptococcus challenge and reduces throat colonization. J Infect Dis 194(3): 325–330PubMedCrossRefGoogle Scholar
  12. BenMohamed L, Belkaid Y, Loing E, Brahimi K, Gras-Masse H, Druilhe P (2002a) Systemic immune responses induced by mucosal administration of lipopeptides without adjuvant. Eur J Immunol 32(8): 2274–2281PubMedCrossRefGoogle Scholar
  13. BenMohamed L, Gras-Masse H, Tartar A, Daubersies P, Brahimi K, Bossus M, Thomas A, Druilhe P (1997) Lipopeptide immunization without adjuvant induces potent and long-lasting B, T helper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees. Eur J Immunol 27(5): 1242–1253PubMedCrossRefGoogle Scholar
  14. BenMohamed L, Krishnan R, Auge C, Primus JF, Diamond DJ (2002b) Intranasal administration of a synthetic lipopeptide without adjuvant induces systemic immune responses. Immunology 106(1): 113–121PubMedCrossRefGoogle Scholar
  15. BenMohamed L, Thomas A, Bossus M, Brahimi K, Wubben J, Gras-Masse H, Druilhe P (2000) High immunogenicity in chimpanzees of peptides and lipopeptides derived from four new Plasmodium falciparum pre-erythrocytic molecules. Vaccine 18(25): 2843–2855PubMedCrossRefGoogle Scholar
  16. BenMohamed L, Thomas A, Druilhe P (2004) Long-term multiepitopic cytotoxic-T-lymphocyte responses induced in chimpanzees by combinations of Plasmodium falciparum liver-stage peptides and lipopeptides. Infect Immun 72(8): 4376–4384PubMedCrossRefGoogle Scholar
  17. BenMohamed L, Wechsler SL, Nesburn AB (2002c) Lipopeptide vaccines-yesterday, today, and tomorrow. Lancet Infect Dis 2(7): 425–431PubMedCrossRefGoogle Scholar
  18. Bernstein DI (2000) Rotavirus vaccine – Current status and future prospects. Biodrugs 14(5): 275–281PubMedCrossRefGoogle Scholar
  19. Bessler WG, Cox M, Lex A, Suhr B, Wiesmuller KH, Jung G (1985) Synthetic lipopeptide analogs of bacterial lipoprotein are potent polyclonal activators for murine lymphocytes-B. J Immunol 135(3): 1900–1905PubMedGoogle Scholar
  20. Brayden DJ, Baird AW (2001) Microparticle vaccine approaches to stimulate mucosal immunisation. Microb Infect 3(10): 867–876CrossRefGoogle Scholar
  21. Brewer JM (2006) (How) do aluminium adjuvants work? Immunol Lett 102(1): 10–15PubMedCrossRefGoogle Scholar
  22. Buwitt-Beckmann U, Heine H, Wiesmüller KH, Jung G, Brock R, Akira S, Ulmer AJ (2005) Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35(1): 282–289PubMedCrossRefGoogle Scholar
  23. Chaignat CL, Monti V (2007) Use of oral cholera vaccine in complex emergencies: What next? Summary report of an expert meeting and recommendations of WHO. J Health Pop Nutr 25(2): 244–261Google Scholar
  24. Chapel HM, August PJ (1976) Report of nine cases of accidental injury to man with Freund’s complete adjuvant. Clin Exp Immunol 24(3): 538–541PubMedGoogle Scholar
  25. Childers NK, Miller KL, Tong G, Llarena JC, Greenway T, Ulrich JT, Michalek SM (2000) Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect Immun 68(10): 5509–5516PubMedCrossRefGoogle Scholar
  26. Childers NK, Tong G, Li F, Dasanayake AP, Kirk K, Michalek SM (2002) Humans immunized with Streptococcus mutans antigens by mucosal routes. J Dent Res 81(1): 48–52PubMedCrossRefGoogle Scholar
  27. Cho H-J, Shin H-J, Han I-K, Jung W-W, Kim YB, Sul D, Oh Y-K (2007) Induction of mucosal and systemic immune responses following oral immunization of mice with Lactococcus lactis expressing human papillomavirus type 16 L1. Vaccine 25(47): 8049–8057PubMedCrossRefGoogle Scholar
  28. Cho HJ, Shin HJ, Han IK, Jung WW, Kim YB, Sul D, Oh YK (2007) Induction of mucosal and systemic immune responses following oral immunization of mice with Lactococcus lactis expressing human papillomavirus type 16 L1. Vaccine 25(47): 8049–8057PubMedCrossRefGoogle Scholar
  29. Cross ML, Lambeth MR, Aldwell FE (2007) Murine cytokine responses following multiple oral immunizations using lipid-formulated mycobacterial antigens. Immunol Cell Biol 86(2): 214–217Google Scholar
  30. Da Silva DM, Velders MP, Nieland JD, Schiller JT, Nickoloff BJ, Kast WM (2001) Physical interaction of human papillomavirus virus-like particles with immune cells. Int Immunol 13(5): 633–641PubMedCrossRefGoogle Scholar
  31. Deliyannis G, Kedzierska K, Lau YF, Zeng W, Turner SJ, Jackson DC, Brown LE (2006) Intranasal lipopeptide primes lung-resident memory CD8+ T cells for long-term pulmonary protection against influenza. Eur J Immunol 36(3): 770–778PubMedCrossRefGoogle Scholar
  32. Deprez B, Sauzet J-P, Boutillon C, Martinon F, Tartar A, Sergheraert C, Guillet J-G, Gomard E, Gras-Masse H (1996) Comparative efficiency of simple lipopeptide constructs for in vivo induction of virus-specific CTL. Vaccine 14(5): 375–382PubMedCrossRefGoogle Scholar
  33. Doherty TM, Olsen AW, van Pinxteren L, Andersen P (2002) Oral vaccination with subunit vaccines protects animals against aerosol infection with Mycobacterium tuberculosis. Infect Immun 70(6): 3111–3121PubMedCrossRefGoogle Scholar
  34. Durier C, Launay O, Meiffrédy V, Saïdi Y, Salmon D, Lévy Y, Guillet JG, Pialoux G, Aboulker JP (2006) Clinical safety of HIV lipopeptides used as vaccines in healthy volunteers and HIV-infected adults. Aids 20(7): 1039–1049PubMedCrossRefGoogle Scholar
  35. Egan MA, Chong SY, Hagen M, Megati S, Schadeck EB, Piacente P, Ma BJ, Montefiori DC, Haynes BF, Israel ZR, Eldridge JH, Staats HF (2004) A comparative evaluation of nasal and parenteral vaccine adjuvants to elicit systemic and mucosal HIV-1 peptide-specific humoral immune responses in cynomolgus macaques. Vaccine 22(27–28): 3774–3788PubMedCrossRefGoogle Scholar
  36. Foster RH, Wagstaff AJ (1998) Tetravalent human-rhesus reassortant rotavirus vaccine – A review of its immunogenicity, tolerability and protective efficacy against paediatric rotavirus gastroenteritis. Biodrugs 9(2): 155–178PubMedCrossRefGoogle Scholar
  37. France LL, Piatti PG, Newman JFE, Toth I, Gibbons WA, Brown F (1994) Circular dichroism, molecular modeling, and serology indicate that the structural basis of antigenic variation in foot-and-mouth disease virus is α-helix formation. Proc Natl Acad Sci U S A 91(18): 8442–8446PubMedCrossRefGoogle Scholar
  38. Gahéry-Ségard H, Pialoux G, Charmeteau B, Sermet S, Poncelet H, Raux M, Tartar A, Lévy JP, Gras-Masse H, Guillet J-G (2000) Multiepitopic B- and T-cell responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine. J Virol 74(4): 1694–1703PubMedCrossRefGoogle Scholar
  39. Gahery-Segard H, Pialoux G, Charmeteau B, Sermet S, Poncelet H, Raux M, Tartar A, Levy JP, Gras-Masse H, Guillet JG (2000) Multiepitopic B- and T-cell responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine. J Virol 74(4): 1694–1703PubMedCrossRefGoogle Scholar
  40. Gahéry-Ségard H, Pialoux G, Figueiredo S, Igea C, Surenaud M, Gaston J, Gras-Masse H, Lévy JP, Guillet JG (2003) Long-term specific immune responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine: characterization of CD8+-T-cell epitopes recognized. J Virol 77(20): 11220–11231PubMedCrossRefGoogle Scholar
  41. Gahery H, Daniel N, Charmeteau B, Ourth L, Jackson A, Andrieu M, Choppin J, Salmon D, Pialoux G, Guillet JG (2006) New CD4+ and CD8+ T cell responses induced in chronically HIV type-1-infected patients after immunizations with an HIV type 1 lipopeptide vaccine. AIDS Res Hum Retroviruses 22(7): 684–694PubMedCrossRefGoogle Scholar
  42. Garinot M, Fievez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jerome C, Marchand-Brynaert J, Schneider YJ, Preat V (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120(3): 195–204PubMedCrossRefGoogle Scholar
  43. Ghielmetti M, Reschner A, Zwicker M, Padovan E (2005) Synthetic bacterial lipopeptide analogs: structural requirements for adjuvanticity. Immunobiol 210(2–4): 211–215CrossRefGoogle Scholar
  44. Guerrero RA, Ball JM, Krater SS, Pacheco SE, Clements JD, Estes MK (2001) Recombinant Norwalk Virus-Like Particles Administered Intranasally to Mice Induce Systemic and Mucosal (Fecal and Vaginal) Immune Responses. J Virol 75(20): 9713–9722PubMedCrossRefGoogle Scholar
  45. Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP (2007) M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 15(10): 701–713PubMedCrossRefGoogle Scholar
  46. Guzman CA, Molinari G, Fountain MW, Rohde M, Timmis KN, Walker MJ (1993) Antibody-Responses in the Serum and Respiratory-Tract of Mice Following Oral Vaccination with Liposomes Coated with Filamentous Hemagglutinin and Pertussis Toxoid. Infect Immun 61(2): 573–579PubMedGoogle Scholar
  47. Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral Immunization with a Recombinant Bacterial-Antigen Produced in Transgenic Plants. Science 268(5211): 714–716PubMedCrossRefGoogle Scholar
  48. Hewitt MC, Seeberger PH (2001) Solution and solid-support synthesis of a potential leishmaniasis carbohydrate vaccine. J Org Chem 66(12): 4233–4243PubMedCrossRefGoogle Scholar
  49. Hillery AM, Florence AT (1996) The effect of adsorbed poloxamer 188 and 407 surfactants on the intestinal uptake of 60-nm polystyrene particles after oral administration in the rat. Int J Pharm 132(1–2): 123–130CrossRefGoogle Scholar
  50. Horváth A, Olive C, Karpati L, Sun HK, Good M, Toth I (2004) Toward the development of a synthetic group A streptococcal vaccine of high purity and broad protective coverage. J Med Chem 47(16): 4100–4104PubMedCrossRefGoogle Scholar
  51. Horváth A, Olive C, Wong A, Clair T, Yarwood P, Good M, Toth I (2002a) Lipoamino acid-based adjuvant carrier system: enhanced immunogenicity of group A streptococcal peptide epitopes. J Med Chem 45(6): 1387–1390PubMedCrossRefGoogle Scholar
  52. Horváth A, Olive C, Wong A, Clair T, Yarwood P, Good M, Toth I (2002b) A lipophilic adjuvant carrier system for antigenic peptides. Lett Pept Sci 8(3–5): 285–288Google Scholar
  53. Hussain N, Jani PU, Florence AT (1997) Enhanced Oral Uptake of Tomato Lectin-Conjugated Nanoparticles in the Rat. Pharm Res 14(5): 613–618PubMedCrossRefGoogle Scholar
  54. Jackson DC, Lau YF, Le T, Suhrbier A, Deliyannis G, Cheers C, Smith C, Zeng W, Brown LE (2004) A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc Natl Acad Sci U S A 101(43): 15440–15445PubMedCrossRefGoogle Scholar
  55. Johnson AG (1964). Adjuvant action of bacterial endotoxins on the primary antibody response. Bacterial endotoxins: Proc Symp Inst Microb Rutgers, State Uni Natl Sci Found. M. Landy and W. Braun. New Brunswick, NJ, Rutgers University Press: 252–262.Google Scholar
  56. Johnstone KD, Dieckelmann M, Jennings MP, Toth I, Blanchfield JT (2005) Chemo-Enzymatic Synthesis of a Trisaccharide-Linked Peptide Aimed at Improved Drug-Delivery. Curr Drug Deliv 2: 215–222PubMedCrossRefGoogle Scholar
  57. Jones D (2007) Cancer vaccines on the horizon. Nat Rev Drug Discov 6(5): 333–334PubMedCrossRefGoogle Scholar
  58. Klinguer C, David D, Kouach M, Wieruszeski JM, Tartar A, Marzin D, Lévy JP, Gras-Masse H (1999) Characterization of a multi-lipopeptides mixture used as an HIV-1 vaccine candidate. Vaccine 18(3–4): 259–267PubMedCrossRefGoogle Scholar
  59. Koeller KM, Wong CH (2000) Synthesis of Complex Carbohydrates and Glycoconjugates: Enzyme-Based and Programmable One-Pot Strategies. Chem Rev 100(12): 4465–4494PubMedCrossRefGoogle Scholar
  60. Krieg AM (2002) From A to Z on CpG. Trends Immunol 23(2): 64–65PubMedCrossRefGoogle Scholar
  61. Kuberan B, Linhardt RJ (2000) Carbohydrate based vaccines. Curr Org Chem 4: 653–677CrossRefGoogle Scholar
  62. Kuklin N, Daheshia M, Karem K, Manickan E, Rouse BT (1997) Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J Virol 71(4): 3138–3145PubMedGoogle Scholar
  63. Langhans B, Schweitzer S, Nischalke HD, Braunschweiger I, Sauerbruch T, Spengler U (2004) Hepatitis C virus-derived lipopeptides differentially induce epitope-specific immune responses in vitro. J Infect Dis 189(2): 248–253PubMedCrossRefGoogle Scholar
  64. Lazzell V, Waldman RH, Rose C, Khakoo R, Jacknowitz A, Howard S (1984) Immunization against influenza in humans using an oral enteric-coated killed virus-vaccine. J Biol Standard 12(3): 315–321CrossRefGoogle Scholar
  65. Lévy Y, Gahéry-Ségard H, Durier C, Lascaux AS, Goujard C, Meiffrédy V, Rouzioux C, El Habib R, Beumont-Mauviel M, Guillet J-G, Delfraissy J-F, Aboulker J-P (2005) Immunological and virological efficacy of a therapeutic immunization combined with interleukin-2 in chronically HIV-1 infected patients. Aids 19(3): 279–286PubMedGoogle Scholar
  66. Li TC, Takeda N, Miyamura T (2001) Oral administration of hepatitis E virus-like particles induces a systemic and mucosal immune response in mice. Vaccine 19: 3476–3484PubMedCrossRefGoogle Scholar
  67. Lindberg AA (1999) Glycoprotein conjugate vaccines. Vaccine 17: S28–S36PubMedCrossRefGoogle Scholar
  68. Liu W-T, Hsu H-L, Liang C-C, Chuang C-C, Lin H-C, Liu Y-T (2007) A comparison of immunogenicity and protective immunity against experimental plague by intranasal and/or combined with oral immunization of mice with attenuated Salmonella serovar Typhimurium expressing secreted Yersinia pestis F1 and V antigen. FEMS Immunol Medic Microb 51(1): 58–69CrossRefGoogle Scholar
  69. Longini IM, Nizam A, Ali M, Yunus M, Shenvi N, Clemens JD (2007) controlling endemic cholera with oral vaccines. PLoS Med 4(11): e336PubMedCrossRefGoogle Scholar
  70. Lubeck MD, Davis AR, Chengalvala M, Natuk RJ, Morin JE, Molnar-Kimber K, Mason BB, Bhat BM, Mizutani S, Hung PP, Purcell RH (1989) Immunogenicity and Efficacy Testing in Chimpanzees of an Oral Hepatitis B Vaccine Based on Live Recombinant Adenovirus. Proc Natl Acad Sci U S A 86(17): 6763–6767PubMedCrossRefGoogle Scholar
  71. Mattingly JA, Waksman BH (1978) Immunological suppression after oral-administration of antigen .1. Specific suppressor cells formed in rat Peyers patches after oral-administration of sheep erythrocytes and their systemic migration. J Immunol 121(5): 1878–1883PubMedGoogle Scholar
  72. McCluskie MJ, Weeratna RD, Krieg AM, Davis HL (2000) CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine 19(7–8): 950–957PubMedCrossRefGoogle Scholar
  73. McGeary RP, Jablonkai I, Toth I (2001) Carbohydrate-based templates for synthetic vaccine and drug delivery. Tetrahedron 57(41): 8733–8742CrossRefGoogle Scholar
  74. McGeary RP, Jablonkai I, Toth I (2002) Towards synthetic vaccines built on carbohydrate cores. Lett Pept Sci 8(3–5): 273–276Google Scholar
  75. McNeela EA, Mills KHG (2001) Manipulating the immune system: humoral versus cell-mediated immunity. Adv Drug Deliv Rev 51(1–3): 43–54PubMedCrossRefGoogle Scholar
  76. Mercier GT, Nehete PN, Passeri MF, Nehete BN, Weaver EA, Templeton NS, Schluns K, Buchl SS, Sastry KJ, Barry MA (2007) Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules. Vaccine 25(52): 8687–8701PubMedCrossRefGoogle Scholar
  77. Mestecky J, Russell MW, Elson CO (2007) Perspectives on mucosal vaccines: Is mucosal tolerance a barrier? J Immunol 179(9): 5633–5638PubMedGoogle Scholar
  78. Xia M, Farkas T, Jiang X (2007) Norovirus capsid protein expressed in yeast forms virus-like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts. J Med Virol 79(1): 74–83PubMedCrossRefGoogle Scholar
  79. Mirchamsy H, Hamedi M, Fateh G, Sassani A (1994) Oral immunization against diphtheria and tetanus infections by fluid diphtheria and tetanus toxoids. Vaccine 12(13): 1167–1172PubMedCrossRefGoogle Scholar
  80. Mittenbuhler K, Baier W, van der Esche U, Heinevetter L, Wiesmuller K-H, Jung G, Weckesser J, Bessler WG, Hoffmann P (1997) Lipopeptides as efficient novel immunogens and adjuvants in parenteral and oral immunization. Curr Top Pept Prot Res 2: 125–135Google Scholar
  81. Moyle PM, Barozzi N, Wimmer N, Olive C, Good M, Toth I (2005) Development of peptide vaccines against HPV-16 associated cervical cancer and group A streptococci. Biopolymers 80(4): 556–557Google Scholar
  82. Moyle PM, Horvath A, Olive C, Good MF, Toth I (2003) Development of lipid-core-peptide (LCP) based vaccines for the prevention of group A streptococcal (GAS) infection. Lett Pept Sci 10(5–6): 605–613CrossRefGoogle Scholar
  83. Moyle PM, Olive C, Karpati L, Barozzi N, Ho M-F, Dyer J, Sun HK, Good M, Toth I (2006) Synthesis and immunological evaluation of M protein targeted tetra-valent and tri-valent group A streptococcal vaccine candidates based on the lipid-core peptide system. Int J Pept Res Ther 12(3): 317–326CrossRefGoogle Scholar
  84. Munro P, Flatau G, Lemichez E (2007) Intranasal immunization with tetanus toxoid and CNF1 as a new mucosal adjuvant protects BALB/c mice against lethal challenge. Vaccine 25(52): 8702–8706PubMedCrossRefGoogle Scholar
  85. Nardelli B, Haser PB, Tam JP (1994) Oral administration of an antigenic synthetic lipopeptide (MAP-P3C) evokes salivary antibodies and systemic humoral and cellular responses. Vaccine 12(14): 1335–1339PubMedCrossRefGoogle Scholar
  86. Niikura M, Takamura S, Kim G, Kawai S, Saijo M, Morikawa S, Kurane I, Li T-C, Takeda N, Yasutomi Y (2002) Chimeric recombinant Hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes. Virology 293(2): 273–280PubMedCrossRefGoogle Scholar
  87. Noad R, Roy P (2003) Virus-like particles as immunogens. Trends Microbiol 11(9): 438–444PubMedCrossRefGoogle Scholar
  88. Nomoto M, Yamada K, Haga M, Hayashi M (1998) Improvement of intestinal absorption of peptide drugs by glycosylation: Transport of tetrapeptide by the sodium ion-dependent d-glucose transporter. J Pharm Sci 87(3): 326–332PubMedCrossRefGoogle Scholar
  89. Nystrom J, Svennerholm A-M (2007) Oral immunization with HpaA affords therapeutic protective immunity against H. pylori that is reflected by specific mucosal immune responses. Vaccine 25(14): 2591–2598PubMedCrossRefGoogle Scholar
  90. Ogra PL, Faden H, Welliver RC (2001) Vaccination strategies for mucosal immune responses (vol 14, p. 430, 2001). Clin Microbiol Rev 14(3): 641–641Google Scholar
  91. Olive C, Batzloff M, Horváth A, Clair T, Yarwood P, Toth I, Good MF (2003) Potential of lipid core peptide technology as a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens. Infect Immun 71(5): 2373–2383PubMedCrossRefGoogle Scholar
  92. Olive C, Batzloff M, Horváth A, Clair T, Yarwood P, Toth I, Good MF (2004) Group A streptococcal vaccine delivery by immunization with a self-adjuvanting M protein-based lipid core peptide construct. Indian J Med Res 119(Suppl): 88–94PubMedGoogle Scholar
  93. Olive C, Batzloff MR, Horváth A, Wong A, Clair T, Yarwood P, Toth I, Good MF (2002) A lipid core peptide construct containing a conserved region determinant of the group A streptococcal M protein elicits heterologous opsonic antibodies. Infect Immun 70(5): 2734–2738PubMedCrossRefGoogle Scholar
  94. Olive C, Ho M-F, Dyer J, Lincoln D, Barozzi N, Toth I, Good MF (2006b) Immunization with a tetraepitopic lipid core peptide vaccine construct induces broadly protective immune responses against group A streptococcus. J Infect Dis 193(12): 1666–1676PubMedCrossRefGoogle Scholar
  95. Olive C, Hsien K, Horvath A, Clair T, Yarwood P, Toth I, Good MF (2005) Protection against group A streptococcal infection by vaccination with self-adjuvanting lipid core M protein peptides. Vaccine 23(17–18): 2298–2303PubMedCrossRefGoogle Scholar
  96. Olive C, Sun HK, Ho M-F, Dyer J, Horváth A, Toth I, Good MF (2006a) Intranasal administration is an effective mucosal vaccine delivery route for self-adjuvanting lipid core peptides targeting the group A streptococcal M protein. J Infect Dis 194(3): 316–324PubMedCrossRefGoogle Scholar
  97. Ouellette AJ, Satchell DP, Hsieh MM, Hagen SJ, Selsted ME (2000) Characterization of luminal paneth cell alpha-defensins in mouse small intestine. Attenuated antimicrobial activities of peptides with truncated amino termini. J Biol Chem 275(43): 33969–33973PubMedCrossRefGoogle Scholar
  98. Perez-Schael I, Salinas B, Tomat M, Linhares AC, Guerrero ML, Ruiz-Palacios GM, Bouckenooghe A, Yarzabal JP (2007) Efficacy of the human rotavirus vaccine RIX4414 in malnourished children. J Infect Dis 196(4): 537–540PubMedCrossRefGoogle Scholar
  99. Persing DH, McGowan P, Evans JT, Cluff C, Mossman S, Johnson D, Baldridge JR (2006). Toll-like receptor 4 agonists as vaccine adjuvants. Immunopotentiators in modern vaccines. E. J. C. Virgil and D. T. O’Hagan. Burlington, MA, Elsevier Academic Press: 93–108.CrossRefGoogle Scholar
  100. Pertmer TM, Oran AE, Moser JM, Madorin CA, Robinson HL (2000) DNA Vaccines for Influenza Virus: Differential Effects of Maternal Antibody on Immune Responses to Hemagglutinin and Nucleoprotein. J Virol 74(17): 7787–7793PubMedCrossRefGoogle Scholar
  101. Pialoux G, Gahéry-Ségard H, Sermet S, Poncelet H, Fournier S, Gérard L, Tartar A, Gras-Masse H, Lévy JP, Guillet JG (2001) Lipopeptides induce cell-mediated anti-HIV immune responses in seronegative volunteers. AIDS 15(10): 1239–1240PubMedCrossRefGoogle Scholar
  102. Pickering RJ, Smith SD, Strugnell RA, Wesselingh SL, Webster DE (2006) Crude saponins improve the immune response to an oral plant-made measles vaccine. Vaccine 24(2): 144–150PubMedCrossRefGoogle Scholar
  103. Piedra PA, Poveda GA, Ramsey B, McCoy K, Hiatt PW (1998) Incidence and prevalence of neutralizing antibodies to the common adenoviruses in children with cystic fibrosis: Implication for gene therapy with adenovirus vectors. Pediatrics 101(6): 1013–1019PubMedCrossRefGoogle Scholar
  104. Plante OJ, Palmacci ER, Seeberger PH (2001) Automated Solid-Phase Synthesis of Oligosaccharides Automated Solid-Phase Synthesis of Oligosaccharides. Science 291(5508): 1523PubMedCrossRefGoogle Scholar
  105. Progress Toward Poliomyelitis Eradication – India, January 2006–September (2007). MMWR Morb Mortal Wkly Rep. 56(45): 1187–91Google Scholar
  106. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6(5): 404–414PubMedCrossRefGoogle Scholar
  107. Ragupathi G, Coltart DM, Williams LJ, Koide F, Kagan E, Allen J, Harris C, Glunz PW, Livingston PO, Danishefsky SJ (2002) On the power of chemical synthesis: Immunological evaluation of models for multiantigenic carbohydrate-based cancer vaccines. Proc Natl Acad Sci 99(21): 13699–13704PubMedCrossRefGoogle Scholar
  108. Robinson HL (2007) HIV/AIDS vaccines: 2007. Clin Pharmacol Ther 82(6): 686–693PubMedCrossRefGoogle Scholar
  109. Roland KL, Cloninger C, Kochi SK, Thomas LJ, Tinge SA, Rouskey C, Killeen KP (2007) Construction and preclinical evaluation of recombinant Peru-15 expressing high levels of the cholera toxin B subunit as a vaccine against enterotoxigenic Escherichia coli. Vaccine 25(51): 8574–8584PubMedCrossRefGoogle Scholar
  110. Roy R (2004) New trends in carbohydrate-based vaccines. Drug Discov Today: Technol 1(3): 327–336CrossRefGoogle Scholar
  111. Russell-Jones GJ (2000) Oral vaccine delivery. J Control Release 65(1–2): 49–54PubMedCrossRefGoogle Scholar
  112. Sabharwal H, Michon F, Nelson D, Dong W, Fuchs K, Manjarrez RC, Sarkar A, Uitz C, Viteri-Jackson A, Suarez RSR, Blake M, Zabriskie JB (2006) Group A Streptococcus (GAS) Carbohydrate as an Immunogen for Protection against GAS Infection. J Infect Dis 193(1): 129–135PubMedCrossRefGoogle Scholar
  113. Seegers JFML (2002) Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol 20(12): 508–515PubMedCrossRefGoogle Scholar
  114. Seth A, Yasutomi Y, Jacoby H, Callery JC, Kaminsky SM, Koff WC, Nixon DF, Letvin NL (2000) Evaluation of a lipopeptide immunogen as a therapeutic in HIV type 1-seropositive individuals. AIDS Res Hum Retroviruses 16(4): 337–343PubMedCrossRefGoogle Scholar
  115. Shahin RD, Amsbaugh DF, Leef MF (1992) Mucosal immunization with filamentous hemagglutinin protects against Bordetella pertussis respiratory infection. Infect Immun 60(4): 1482–1488PubMedGoogle Scholar
  116. Shalaby WSW (1995) Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin Immunol Immunopath 74(2): 127–134CrossRefGoogle Scholar
  117. Sharon M, Nir P, Lior K, David BN, Tomer I, Paula S, Reuven L, Shlomo L (2007) Tail scarification with Vaccinia virus Lister as a model for evaluation of smallpox vaccine potency in mice. Vaccine 25(45): 7743–7753PubMedCrossRefGoogle Scholar
  118. Shin SJ, Shin SW, Kang ML, Lee DY, Yang MS, Jang YS, Yoo HS (2007) Enhancement of protective immune responses by oral vaccination with Saccharomyces cerevisiae expressing recombinant Actinobacillus pleuropneumoniae ApxIA or ApxIIA in mice. J Vet Sci 8(4): 383–392PubMedCrossRefGoogle Scholar
  119. Silin DS, Lyubomska OV, Jirathitikal V, Bourinbaiar AS (2007) Oral vaccination: where we are? Exp Opin Drug Deliv 4(4): 323–340CrossRefGoogle Scholar
  120. Simerska P, Abdel-Aal ABM, Fujita Y, McGeary RP, Moyle PM, Batzloff MR, Olive C, Good M, Toth I (2008) Development of a liposaccharide-based delivery system and its application to the design of group A streptococcal vaccines. J Med Chem 51(5): 1447–1452CrossRefGoogle Scholar
  121. Steller MA, Gurski KJ, Murakami M, Daniel RW, Shah KV, Celis E, Sette A, Trimble EL, Park RC, Marincola FM (1998) Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res 4(9): 2103–2109PubMedGoogle Scholar
  122. Sutter RW, Prevots DR, Cochi SL (2000) Poliovirus vaccines – progress toward global poliomyelitis eradication and changing routine immunization recommendations in the United States. Pediatr Clin North Am 47(2): 287–308PubMedCrossRefGoogle Scholar
  123. Therien HM, Lair D, Shahum E (1990) Liposomal vaccine – influence of antigen association on the kinetics of the humoral response. Vaccine 8(6): 558–562PubMedCrossRefGoogle Scholar
  124. Thones N, Muller M (2007) Oral immunization with different assembly forms of the HPV 16 major capsid protein L1 induces neutralizing antibodies and cytotoxic T-lymphocytes. Virol 369(2): 375–388CrossRefGoogle Scholar
  125. Toth I, Danton M, Flinn N, Gibbons WA (1993) A combined adjuvant and carrier system for enhancing synthetic peptides immunogenicity utilizing lipidic amino acids. Tetrahedron Lett 34(24): 3925–3928CrossRefGoogle Scholar
  126. Tritto E, Muzzi A, Pesce I, Monaci E, Nuti S, Galli G, Wack A, Rappuoli R, Hussell T, De Gregorio E (2007) The acquired immune response to the mucosal adjuvant LTK63 imprints the mouse lung with a protective signature. J Immunol 179(8): 5346–5357PubMedGoogle Scholar
  127. Ulrich JT, Myers KR (1995) Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. Pharm Biotechnol 6: 495–524PubMedGoogle Scholar
  128. van Duin D, Medzhitov R, Shaw AC (2006) Triggering TLR signaling in vaccination. Trends Immunol 27(1): 49–55PubMedCrossRefGoogle Scholar
  129. VanCott TC, Kaminski RW, Mascola JR, Kalyanaraman VS, Wassef NM, Alving CR, Ulrich JT, Lowell GH, Birx DL (1998) HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160. J Immunol 160(4): 2000–2012PubMedGoogle Scholar
  130. Wagner B, Earn D (2008) Circulating vaccine derived polio viruses and their impact on global polio eradication. Bull Math Biol 70(1): 253–280PubMedCrossRefGoogle Scholar
  131. Wiesmüller K-H, Fleckenstein B, Jung G (2001) Peptide vaccines and peptide libraries. Biol Chem 382(4): 571–579PubMedCrossRefGoogle Scholar
  132. Wu C-M, Chung T-C (2007) Mice protected by oral immunization with Lactobacillus reuteri secreting fusion protein of Escherichia coli enterotoxin subunit protein. FEMS Immunol & Med Microbiol 50(3): 354–365CrossRefGoogle Scholar
  133. Yokoyama Y, Harabuchi Y (2002) Intranasal immunization with lipoteichoic acid and cholera toxin evokes specific pharyngeal IgA and systemic IgG responses and inhibits streptococcal adherence to pharyngeal epithelial cells in mice. Int J Pediatr Otorhinolaryngol 63(3): 235–241PubMedCrossRefGoogle Scholar
  134. Zeng W, Ghosh S, Lau YF, Brown LE, Jackson DC (2002) Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J Immunol 169(9): 4905–4912PubMedGoogle Scholar
  135. Zeng W, Jackson DC, Murray J, Rose K, Brown LE (2000) Totally synthetic lipid-containing polyoxime peptide constructs are potent immunogens. Vaccine 18(11–12): 1031–1039PubMedCrossRefGoogle Scholar
  136. Zhang X, Zhang X, Yang Q (2007) Effect of compound mucosal immune adjuvant on mucosal and systemic immune responses in chicken orally vaccinated with attenuated Newcastle-disease vaccine. Vaccine 25(17): 3254–3262PubMedCrossRefGoogle Scholar
  137. Zhang Y-D, Lu X-L, Li N-F (2007) The prospective preventative HIV vaccine based on modified poliovirus. Med Hyp 68(6): 1258–1261CrossRefGoogle Scholar
  138. Zhong G, Toth I, Reid R, Brunham RC (1993) Immunogenicity evaluation of a lipidic amino acid-based synthetic peptide vaccine for Chlamydia trachomatis. J Immunol 151(7): 3728–3736PubMedGoogle Scholar
  139. Zimmerman RK, Spann SJ (1999) Poliovirus vaccine options. Am Fam Phys 59(1): 113–118Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pavla Simerska
    • 1
    Email author
  • Peter Moyle
    • 1
  • Colleen Olive
    • 1
  • Istvan Toth
    • 1
  1. 1.School of Chemistry & Molecular Biosciences, School of PharmacyUniversity of QueenslandBrisbaneAustralia

Personalised recommendations