Skip to main content

Earthworms and Their Use in Eco(toxico)logical Modeling

  • Chapter
  • First Online:
Ecotoxicology Modeling

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 2))

Abstract

A healthy terrestrial food web is essential for the sustainable use of soils. Earthworms are key species within terrestrial food webs and perform a number of essential functionalities like decomposition of organic litter, tillage and aeration of the soil, and enhancement of microbial activity. Chemicals may impact the functions of the soil by directly affecting one or more of these processes or by indirectly reducing the number and activity of soil engineers like earthworms. The scope of this chapter is on the assessment and modeling of the interactions of chemicals with earthworms and the resulting impacts. It is the aim of this contribution to provide a general review of the research that were undertaken to increase our understanding of the underlying processes.

Chemicals may induce a variety of adverse effects on ecosystems. Chemical speciation, bioavailability, bioaccumulation, toxicity, essentiality, and mixture effects are key issues in assessing the hazards of chemicals. Although it is possible to group chemicals with regard to their fate and effects, a plethora of chemical and biological processes affects actually occurring effects. These effects are usually modulated by (varying) environmental conditions. Using the basic processes underlying the uptake characteristics and the adverse effects of organic pollutants and metals on earthworms as an illustration, an overview will be given of the interactions between the chemistry and biology of pollutants, mostly at the interface of biological and environmental matrices. The impact of environmental conditions on uptake and toxicity of chemicals for soil dwelling organisms will explicitly be accounted for. The environmental chemistry of organic compounds and metals, as well as the resulting methods for assessing chemical availability are assumed as tokens and the emphasis is thus on the biological processes that affect the fate and effects of contaminants following interaction of the earthworms with the bioavailable fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fragoso C, Brown G, Feijoo A (2004) The influence of Gilberto Righi on tropical earthworm taxonomy: The value of a full-time taxonomist. Pedobiologia 47: 400–404

    Google Scholar 

  2. Darwin C (1809–1882) The formation of vegetable mould through the action of worms, with observations on their habits. Release date 2000–10–01

    Google Scholar 

  3. Bouché MB (1977) Strategies lombriciennes. In: U. Lohm, T. Persson (Eds) Soil organisms as components of ecosystems. Ecol Bull (Stockholm) 25: 122–132

    Google Scholar 

  4. Lee KE (1959) The earthworm fauna of New Zealand. New Zeal Depart Sci Ind Res Bull 130: 486

    Google Scholar 

  5. Lee KE (1985) Earthworms – Their Ecology and Relationships with Soils and Land Use. Academic, New York, NY, p. 411

    Google Scholar 

  6. Lavelle P (1981) Stratégies de reproduction chez les vers de terre. Acta Oecol Gen 2: 117–133

    Google Scholar 

  7. Lavelle P (1997) Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Adv Ecol Res 27: 93–132

    Article  Google Scholar 

  8. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur J Soil Biol 33: 159–193

    CAS  Google Scholar 

  9. Blanchart E, Lavelle P, Braudeau E, LeBissonnais Y, Valentin C (1997) Regulation of soil structure by geophagous earthworm activities in humid savannas of Côte d’Ivoire. Soil Biol Biochem 29: 431–439

    Article  CAS  Google Scholar 

  10. Edwards CA (Ed.) (1998, 2004). Earthworm Ecology (1st Ed. 1998; 2nd Ed. 2004) CRC, Boca Raton FL

    Google Scholar 

  11. Zharikov GA, Fartukov SV, Tumansky IM, Ishchenko NV (1993) Use of the solid wastes of microbial industry by preparing worm compost. Biotechnologia 9: 21–23

    Google Scholar 

  12. McKey-Fender D, Fender WM, Marshall VG (1994) North American earthworms native to Vancouver Island and the Olympic Peninsula. Can J Zool 72: 1325–1339

    Article  Google Scholar 

  13. Waeterschoot H, Van Assche F, Regoli L, Schoeters I, Delbeke K (2003) Metals in perspective. J Environ Monit 5: 95N–102N

    Article  Google Scholar 

  14. Morgan JE, Morgan AJ (1988) Earthworms as biological monitors of Cd, Cu, Pb, and Zn in metalliferous soils. Environ Pollut 54: 123–138

    Article  CAS  Google Scholar 

  15. Saxe JK, Impellitteri CA, Peijnenburg WJGM, Allen HE (2001) A novel model describing heavy metal concentrations in the earthworm Eisenia andrei. Environ Sci Technol 35: 4522–4529

    Article  CAS  Google Scholar 

  16. Jager T, Fleuren RHLJ, Hogendoorn EA, De Korte G (2003) Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol 37: 3399–3404

    Article  CAS  Google Scholar 

  17. Vijver MG, Vink JPM, Miermans CJH, Van Gestel CAM (2003) Oral sealing using glue: A new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem 35: 125–132

    Article  CAS  Google Scholar 

  18. Didden W (2003) Oligochaetes. In: Markert BA, Breure AM, Zechmeister HG (Eds) Bioindicators and Biomonitors. Elsevier, Amsterdam

    Google Scholar 

  19. Løkke H, Van Gestel CAM (1998) Handbook of Soil Invertebrate Toxicity Tests. Wiley, Chichester

    Google Scholar 

  20. Van Gestel CAM, Dirven-van Breemen EM, Baerselman R (1993) Accumulation and elimination of cadmium, chromium and zinc and effects on growth and reproduction in Eisenia andrei (Oligochaeta, Annelida). Sci Total Environ Part 1: 585–597

    Google Scholar 

  21. Spurgeon DJ, Hopkin SP (1996) The effects of metal contamination on earthworm populations around a smelting works – quantifying species effects. Appl Soil Ecol 4: 147–160

    Article  Google Scholar 

  22. Osté LA, Dolfing J, Ma W-C, Lexmond TM (2001) Cadmium uptake by earthworms as related to the availability in the soil and the intestine. Environ Toxicol Chem 20: 1785–1791

    Article  Google Scholar 

  23. Lanno RP, McCarty LS (1997) Earthworm bioassays: Adopting techniques from aquatic toxicity testing. Soil Biol Biochem 29: 693–697

    Article  CAS  Google Scholar 

  24. Stürzenbaum SR, Kille P, Morgan AJ (1998) Heavy metal-induced molecular responses in the earthworm, Lumbricus rubellus genetic fingerprinting by directed differential display. Appl Soil Ecol 9: 495–500

    Article  Google Scholar 

  25. Lanno RP, Wren CD, Stephenson GL (1997) The use of toxicity curves in assessing the toxicity of soil contaminants to Lumbricus terrestris. Soil Biol Biochem 29: 689–692

    Article  CAS  Google Scholar 

  26. Laverack MS (1963) The Physiology of Earthworms. Pergamon, Oxford

    Google Scholar 

  27. Wallwork JA (1983) Annelids: The First Coelomates. Studies in Biology, Earthworm Biology. Edward Arnold Publishers, London

    Google Scholar 

  28. Edwards CA, Lofty JR (1972) Biology of Earthworms. Chapman and hall, London

    Google Scholar 

  29. Ireland MP, Richards KS (1981) Metal content, after exposure to cadmium, of two earthworms of known differing calcium metabolic activity. Environ Pollut 26: 69–78

    Article  Google Scholar 

  30. Campbell PGC (1995) Interactions between trace metals and aquatic organisms: A critique of the free-ion activity Model. In: Tessier A, Turner DR (Eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, New York, NY, pp. 46–102

    Google Scholar 

  31. Janssen RPT, Peijnenburg WJGM, Posthuma L, Van den Hoop MAGT (1997) Equilibrium partitioning of heavy metals in Dutch field soils. I. Relationship between metal partitioning coefficients and soil characteristics. Environ Toxicol Chem 16: 2479–2488

    CAS  Google Scholar 

  32. Lock K, Jansen CR (2001) Zinc and cadmium body burdens in terrestrial oligochaetes: Use and significance in environmental risk assessment. Environ Toxicol Chem 20: 2067–2072

    Article  CAS  Google Scholar 

  33. Jager T (1998) Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms. Environ Toxicol Chem 17: 2080–2090

    Article  CAS  Google Scholar 

  34. Sample BE, Suter ii GW Beauchamp JJ, Efroymson RA (1999) Literature-derived bioaccumulation models for earthworms: Development and validation. Environ Toxicol Chem 18: 2110–2120

    Article  CAS  Google Scholar 

  35. Kelsey JW, White JC (2005) Multi-species interactions impact the accumulation of weathered 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p, p′-DDE) from soil. Environ Pollut 137: 222–230

    Article  CAS  Google Scholar 

  36. Kreitinger JP, Quiñones-Rivera A, Neuhauser EF, Alexander M, Hawthorne SB (2007) Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils. Environ Toxicol Chem 26: 1809–1817

    Article  CAS  Google Scholar 

  37. McGeer JC, Brix KV, Skeaf JM, DeForest DK, Brigham SI, Adams WJ, Green A (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22: 1017–1037

    Article  CAS  Google Scholar 

  38. DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84: 236–246

    Article  CAS  Google Scholar 

  39. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004). The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Safety 57: 39–47

    Article  CAS  Google Scholar 

  40. Paracelsus (Philip T. B. von Hohenheim) (1564) Drey Bucker, The Heirs of Arnold Byrckmann, Cologne Germany

    Google Scholar 

  41. Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecotoxicological relevance – a review. Environ Sci Technol 38: 4705–4712

    Article  CAS  Google Scholar 

  42. Loonen H, Muir DCG, Parsons JR, Govers HAJ (1997) Bioaccumulation of polychlorinated dibenzo-p-dioxins in sediment by oligochaetes: Influence of exposure pathway and contact time. Environ Toxicol Chem 16: 1518–1525

    CAS  Google Scholar 

  43. Belfroid A, Seinen W, Van Den Berg M, Hermens J, Van Gestel K (1995) Uptake, bioavailability and elimination of hydrophobic compounds in earthworms (Eisenia andrei) in field contaminated soil. Environ Toxicol Chem 14: 605–612

    CAS  Google Scholar 

  44. Belfroid A, Seinen W, Van Gestel K, Hermens J, Van Leeuwen K (1995) Modelling the accumulation of hydrophobic organic chemicals in earthworms: Application of the equilibrium partitioning theory. Environ Sci Pollut Res 2: 5–15

    Article  CAS  Google Scholar 

  45. Beyer WN (1996) Accumulation of chlorinated benzenes in earthworms. Bull Environ Contam Toxicol 57: 729–736

    Article  CAS  Google Scholar 

  46. Morgan JE, Morgan AJ (1990) The distribution of cadmium, copper, lead, zinc and calcium in the tissues of the earthworm Lumbricus rubellus sampled from one uncontaminated and four polluted soils. Oecologia 84: 559–566

    Google Scholar 

  47. Morgan AJ, Turner MP, Morgan JE (2002) Morphological plasticity in metal-sequestering earthworm chloragocytes: Morphometric electron microscopy provides a biomarker of exposure in field populations. Environ Toxicol Chem 21: 610–618

    Article  CAS  Google Scholar 

  48. Morgan JE, Morgan AJ (1998) The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site. Environ Pollut 99: 167–175

    Article  CAS  Google Scholar 

  49. Stürzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) Metal ion trafficking in earthworms – identification of a cadmium specific metallothionein. J Biol Chem 276: 34013–34018

    Article  Google Scholar 

  50. Prinsloo MW, Reinecke SA, Przybylowicz WJ, Mesjasz-Przybylowicz J, Reinecke AJ (1990) Micro-PIXE studies of Cd distribution in the nephridia of the earthworm Eisenia fetida (Oligochaeta). Nucl Instrum Methods Phys Res B 158: 317–322

    Article  Google Scholar 

  51. Andersen C, Laursen J (1982) Distribution of heavy metals in Lumbricus terrestris, Aporrectodea longa and A. rosea measured by atomic absorption and X-ray fluorescence spectrometry. Pedobiologia 24: 347–356

    CAS  Google Scholar 

  52. Vijver MG, Van Gestel CAM, Van Straalen NM, Lanno RP, Peijnenburg WJGM (2006) Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa). Environ Toxicol Chem 25: 807–814

    Article  CAS  Google Scholar 

  53. Van Straalen NM, Donker MH, Vijver MG, Van Gestel CAM (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136: 409–417

    Article  Google Scholar 

  54. Peijnenburg W, Posthuma L, Zweers P, Baerselman R, De Groot A, Van Veen R, Jager D (1999) Relating environmental availability to bioavailability: Soil-type dependent metal accumulation in the oligochaete Eisenia andrei. Ecotoxicol Environ Safety 44: 294–310

    Article  CAS  Google Scholar 

  55. Widianarko B, Kuntoro FX, Van Gestel CAM, Van Straalen NM (2001) Toxicokinetics and toxicity of zinc under time-varying exposure in the guppy (Poecilia reticulata). Environ Toxicol Chem, 20: 763–768

    CAS  Google Scholar 

  56. Peijnenburg WJGM, Zablotskaja M, Vijver MG (2007) Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol Environ Safety 67: 163–179

    Article  CAS  Google Scholar 

  57. Awata H, Johnson KA, Anderson TA (2000) Passive sampling devices as surrogates for evaluating bioavailability of aged chemicals in soil. Toxicol Environ Chem 73: 25–42

    Google Scholar 

  58. Van Der Wal L, Jager T Fleuren RHLJ, Barendregt A, Sinnige TL, Van Gestel CAM, Hermens JLM (2004) Solid phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38: 4842–4848

    Article  Google Scholar 

  59. Bergknut M, Sehlin E, Lundstedt S, Andersson PL, Haglund P, Tysklind M (2007) Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives. Environ Pollut 145: 154–160

    Article  CAS  Google Scholar 

  60. Koolhaas JE, Van Gestel CAM, Römbke J, Soares AMVM, Jones SE (2004) Ring-testing and field-validation of a terrestrial model ecosystem (TME) – An instrument for testing potentially harmful substances: Effects of carbendazim on soil microarthropod communities. Ecotoxicology 13: 75–88

    Article  CAS  Google Scholar 

  61. Boyle TB, Fairchild JF (1997) The role of mesocosm studies in ecological risk analysis. Ecol Appl 7: 1099–1102

    Article  Google Scholar 

  62. McCarthy JF, Shugart LR (1990) Biological markers of environmental contamination. In: McCarthy JF, Shugart LR (Eds) Biomarkers of Environmental Contamination. Lewis Publishers Chelsea, MI

    Google Scholar 

  63. Depledge MH, Fossi MC (1994) The role of biomarkers in environmental assessment (2) invertebrates. Ecotoxicology 3: 161–172

    Article  Google Scholar 

  64. Weeks JM, Svendsen C (1996) Neutral red retention by lysosomes from earthworm (Lumbricus rubellus) coelomocytes: A simple biomarker of exposure to soil copper. Environ Toxicol Chem 15: 1801–1805

    CAS  Google Scholar 

  65. Xiao NW, Song Y, Ge F, Liu XH, Yang ZY (2006) Biomarkers responses of the earthworm Eisenia fetida to acetochlor exposure in OECD soil. Chemosphere 65: 907–912

    Article  CAS  Google Scholar 

  66. Scott-Fordsmann JJ, Weeks JM (1998) Review of selected biomarkers in earthworms. In: Sheppard S, Bembridge J, Holmstrup M, Posthuma L (Eds) Advances in Earthworm Ecotoxicology. SETAC Press, Pensacola, FL, pp. 173–189

    Google Scholar 

  67. Dikshith TSS, Gupta SK (1981) Carbaryl induced biochemical changes in earthworm (Pheretima posthuma). Indian J Biochem Biophys 18: 154

    Google Scholar 

  68. Maboeta MS, Reinecke SA, Reinecke AJ (2002) The relation between lysosomal biomarker and population responses in a field population of Microchaetus sp. (Oligochaeta) exposed to the fungicide copper oxychloride. Ecotoxicol Environ Safety 52: 280–288

    Article  CAS  Google Scholar 

  69. International Standards Organization (1993) Soil Quality – Effects of Pollutants on Earthworms (Eisenia fetida). Part 1: Determination of Acute Toxicity Using Artificial Soil Substrate, Geneva, Switzerland ISO DIS 11268–1

    Google Scholar 

  70. International Standards Organization (1996) Soil Quality – Effects of Pollutants on Earthworms (Eisenia fetida fetida, Eisenia fetida andrei). Part 2: Determination of Effects on Reproduction, Geneva, Switzerland ISO DIS 11268–2

    Google Scholar 

  71. Organization for Economic Cooperation and Development (1984) OECD guidelines for testing of chemicals: Earthworm acute toxicity test. OECD Guideline No. 207, Paris, France

    Google Scholar 

  72. Natal-da-Luz T, Römbke J, Sousa JP (2008) Avoidance tests in site-specific risk assessment – influence of soil properties on the avoidance response of collembolan and earthworms. Environ Toxicol Chem 27: 1112–1117

    Article  CAS  Google Scholar 

  73. Teuben A, Verhoef HA (1992) Relevance of micro- and mesocosm experiments for studying soil ecosystem processes. Soil Biol Biochem 24: 1179–1183

    Article  Google Scholar 

  74. Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77: 677–680

    Article  Google Scholar 

  75. Knacker T, Van Gestel CAM, Jones SE, Soares AMVM, Schallnaß HJ, Förster B, Edwards CA (2004) Ring-testing and field-validation of a terrestrial model ecosystem (TME) – An instrument for testing potentially harmful substances: Conceptual approach and study design. Ecotoxicology 13: 9–27

    Article  CAS  Google Scholar 

  76. Parmelee RW, Wentsel RS, Phillips CT, Simini M, Checkai RT (1993) Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure. Environ Toxicol Chem 12: 1477–1486

    Article  CAS  Google Scholar 

  77. Vink K, Van Straalen NM (1999) Effects of benomyl and diazinon on isopod mediated leaf litter decomposition in microcosms. Pedobiologia 43: 345–359

    CAS  Google Scholar 

  78. Boyle TP, Fairchild JF (1997) The role of mesocosm studies in ecological risk analysis. Ecol Appl 7: 1099–1102

    Article  Google Scholar 

  79. Weyers A, Sokull-Klüttgen B, Knacker T, Martin S, Van Gestel CAM (2004) Use of terrestrial model ecosystem data on environmental risk assessment for industrial chemicals, biocides and plant protection products in the EU. Ecotoxicology 13: 163–176

    Article  CAS  Google Scholar 

  80. European Union. Council Directive of 15 July 1991 Concerning the Placing of Plant Protection Products on the Market, 91/414/EC Brussels Belgium

    Google Scholar 

  81. Heimbach F (1992) Correlation between data from laboratory and field tests for investigating the toxicity of pesticides for earthworms. Soil Biol Biochem 24: 1749–1753

    Article  CAS  Google Scholar 

  82. Spurgeon DJ, Weeks JM (1998) Evaluation of factors influencing results from laboratory toxicity tests with earthworms. In: Sheppard S, Bembridge J, Holmstrup M, Posthuma L (Eds) Advances in Earthworm Ecotoxicology. SETAC Press, Pensacola, FL, pp. 15–25

    Google Scholar 

  83. Criel P, Lock K, Van Eeckhout H, Oorts K, Smolders E, Janssen C (2008) Influence of soil properties on copper toxicity for two soil invertebrates. Environ Toxicol Chem 27: 1748–1755

    Article  CAS  Google Scholar 

  84. McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27: 1719–1728

    Article  Google Scholar 

  85. Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13: 241–248

    Article  CAS  Google Scholar 

  86. Paumen ML, Stol P, Ter Laak TL, Kraak MHS, Van Gestel CAM, Admiraal W (2008) Chronic exposure of the oligochaete Lumbricus variegatus to polycyclic aromatic compounds (PACs): Bioavailability and effects on reproduction. Environ Sci Technol 42: 3434–3440

    Article  CAS  Google Scholar 

  87. Van Gestel CAM, Ma W-C (1993) Development of QSAR’s in soil ecotoxicology: Earthworm toxicity and soil sorption of chlorophenols, chlorobenzenes and chloroanilines. Water Air Soil Pollut 69: 265–276

    Article  Google Scholar 

  88. Miyazaki A, Amano T, Saito H, Nakano Y (2002) Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms. Chemosphere 47: 65–69

    Article  CAS  Google Scholar 

  89. Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, DiToro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB (2002) The biotic ligand model: A historical overview. Comp Biochem Physiol C 133: 3–35

    Google Scholar 

  90. Steenbergen N, Iaccino F, De Winkel M, Reijnders L, Peijnenburg W (2005) Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environ Sci Technol 39: 5694–5702

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willie J. G. M. Peijnenburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peijnenburg, W.J.G.M., Vijver, M.G. (2009). Earthworms and Their Use in Eco(toxico)logical Modeling. In: Devillers, J. (eds) Ecotoxicology Modeling. Emerging Topics in Ecotoxicology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0197-2_7

Download citation

Publish with us

Policies and ethics