Skip to main content

Molecular Biology of Secondary Metabolism: Case Study for Glycyrrhiza Plants

  • Chapter
  • First Online:
Recent Advances in Plant Biotechnology

Abstract

Licorice (roots and stolons of Glycyrrhiza plants) is one of the most important crude drugs from ancient times, and its major constituent is an oleanane-type triterpene saponin, glycyrrhizin, which is a well-known sweetener as well as a pharmaceutical. We are using Glycyrrhiza glabra (common licorice) as a model plant to elucidate the regulation of triterpene biosynthesis in higher plants. Cultured cells of G.glabra do not produce glycyrrhizin but produce two structurally different triterpenoid constituents, namely betulinic acid and soyasaponins. Glycyrrhizin is localized exclusively in the woody parts of thickened roots, whereas soyasaponins are localized mainly in the seeds and rootlets. Betulinic acid, a lupane-type triterpene, is localized in the cork layer of the thickened roots. The cultured licorice cells converted exogenously administered glycyrrhetinic acid, the aglycone of glycyrrhizin, into seven biotransformation products, but formation of glycyrrhizin was not detected among the biotransformation products. To elucidate the regulation of the triterpene biosyntheses in G.glabra, cDNAs of squalene synthase and three oxidosqualene cyclaces were cloned and characterized. mRNA levels of these enzymes were differently regulated in the cultured cells and intact plants of G.glabra. Exogenously applied methyl jasmonate (MeJA) stimulated soyasaponin biosynthesis in cultured cells, and mRNA levels of squalene synthase and β-amyrin synthase were upregulated by MeJA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, I., Rohmer, M., Prestwich, G.D. 1993. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 93: 2189–2206.

    Article  CAS  Google Scholar 

  • Achnine, L., Huhman, D.V., Farag, M.A., Sumner, L.W., Blount, J.W., Dixon, R.A. 2005. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J. 41: 875–887.

    Article  PubMed  CAS  Google Scholar 

  • Ayabe, S., Iida, K., Furuya, T. 1986. Stress-induced formation of echinatin and a metabolite, 5′-prenyl-licodione, in cultured Glycyrrhiza echinata cells. Phytochemistry 25: 2803–2806.

    Article  CAS  Google Scholar 

  • Chappell, J. 1995. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 46: 521–547.

    Article  CAS  Google Scholar 

  • Fuggersberger-Heinz, R., Franz, G. 1984. Formation of glycyrrhizinic acid in Glycyrrhiza glabra var. typica. Planta Medica 50: 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, M.R. 1978. Glycyrrhiza in old and new perspectives. Lloydia 41: 348–354.

    PubMed  CAS  Google Scholar 

  • Haralampidis, K., Trojanowska, M., Osbourn, A.E. 2002. Biosynthesis of triterpenoid saponins in plants. Adv. Biochem. Eng. Biotech. 75: 31–49.

    CAS  Google Scholar 

  • Hattori, M., Miyachi, K., Shu, Y.Z., Kakiuchi, N., Namba, T. 1986. Studies on dental caries prevention by traditional medicines (IX) Potent antibacterial action of coumarin derivatives from licorice roots against Streptcoccus mutans. Shoyakugaku Zasshi 40: 406–412.

    CAS  Google Scholar 

  • Hayashi, H., Fukui, H., Tabata, M. 1988. Examination of triterpenoids produced by callus and cell suspension cultures of Glycyrrhiza glabra. Plant Cell Rep. 7: 508–511.

    Article  CAS  Google Scholar 

  • Hayashi, H., Fukui, H., Tabata, M. 1990a. Biotransformation of 18β-glycyrrhetinic acid by cell suspension cultures of Glycyrrhiza glabra. Phytochemistry 29: 2149–2152.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Sakai, T., Fukui, H., Tabata, M. 1990b. Formation of soyasaponins in licorice cell suspension cultures. Phytochemistry 29: 3127–3129.

    Article  CAS  Google Scholar 

  • Hayashi, H., Yamada, K., Fukui, H., Tabata, M. 1992. Metabolism of exogenous 18β-glycyrrhetinic acid in cultured cells of Glycyrrhiza glabra. Phytochemistry 31: 2729–2733.

    Article  CAS  Google Scholar 

  • Hayashi, H., Fukui, H., Tabata, M. 1993a. Distribution pattern of saponins in different organs of Glycyrrhiza glabra. Planta Med. 59: 351–353.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Hanaoka, S., Tanaka, S., Fukui, H., Tabata, M. 1993b. Glycyrrhetinic acid 24-hydroxylase activity in microsomes of cultured licorice cells. Phytochemistry 34: 1303–1307.

    Article  CAS  Google Scholar 

  • Hayashi, H., Nishiyama, Y., Tomizawa, N., Hiraoka, N., Ikeshiro, Y. 1996. UDP-glucuronic acid: triterpene glucuronosyltransferase activity in cultured licorice cells. Phytochemistry 42:665–666.

    Article  CAS  Google Scholar 

  • Hayashi, K., Hayashi, H., Hiraoka, N., Ikeshiro, Y. 1997. Inhibitory activity of soyasaponin II on virus replication in vitro. Planta Med. 63: 102–105.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Hiraoka, N., Ikeshiro, Y., Yamamoto, H., Yoshikawa, T. 1998. Seasonal variation of glycyrrhizin and isoliquiritigenin glycosides in the roots of Glycyrrhiza glabra L. Biol. Pharm. Bull. 21: 987–989.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Hiraoka, N., Ikeshiro, Y. 1999. Molecular cloning and characterization of two cDNAs for Glycyrrhiza glabra squalene synthase. Biol. Pharm. Bull. 22: 947–950.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Hiraoka, N., Ikeshiro, Y., Kushiro, T., Morita, M., Shibuya, M., Ebizuka, Y. 2000a. Molecular cloning and characterization of a cDNA for Glycyrrhiza glabra cycloartenol synthase. Biol. Pharm. Bull. 23: 231–234.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Hosono, N., Kondo, M., Hiraoka, N., Ikeshiro, Y., Shibano, M., Kusano, G., Yamamoto, H., Tanaka, T., Inoue, K. 2000b. Phylogenetic relationship of six Glycyrrhiza species based on rbcL sequences and chemical constituents. Biol. Pharm. Bull. 23: 602–606.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Huang, P., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y., Kushiro, T., Shibuya, M., Ebizuka, Y. 2001. Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosynthesis of Glycyrrhiza glabra. Biol. Pharm. Bull. 24: 912–916.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Huang, P., Inoue, K. 2003. Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol. 44: 404–411.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Huang, P., Takada, S., Obinata, M., Inoue, K., Shibuya, M., Ebizuka, Y. 2004. Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra. Biol. Pharm. Bull. 27: 1086–1092.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Hiraoka, N., Ikeshiro, Y. 2005a. Differential regulation of soyasaponin and betulinic acid production by yeast extract in cultured licorice cells. Plant Biotechnol. 22: 241–244.

    Article  CAS  Google Scholar 

  • Hayashi, H., Miwa, E., Inoue, K. 2005b. Phylogenetic relationship of Glycyrrhiza lepidota, American licorice, in genus Glycyrrhiza based on rbcL sequences and chemical constituents. Biol. Pharm. Bull. 28: 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Iturbe-Ormaetxe, I., Haralampidis, K., Papadopoulou, K., Osbourn, A.E. 2003. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol. Biol. 51: 731–743.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, H., Townsend, B., Osbourn, A. 2005. Unravelling triterpene glycoside synthesis in plants: phytochemistry and functional genomics join forces. Planta 220: 503–506.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, S.M., Tsay, Y.H., Fisch, T.M., Robinson, G.W. 1991. Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc. Natl. Acad. Sci. USA 88:6038–6042.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwada, Y., Hashimoto, F., Cosentino, L.M., Chen, C.H., Garrett, P.E., Lee, K.H. 1996. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. J. Med. Chem. 39: 1016–1017.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, I., Yoshikawa, M., Yoshioka, I. 1974. Structures of three soybean saponins: soyasaponin I, II and III. Chem. Pharm. Bull. 22: 3010–3013.

    Article  CAS  Google Scholar 

  • Kitagawa, I., Taniyama, T., Murakami, T., Yoshihara, M., Yoshikawa, M. 1988. Saponin and sapogenol. XLVI. On the constituents in aerial part of American alfalfa, Medicago sativa L. The structure of dehydrosoyasaponin I. Yakugaku Zasshi 108: 547–554.

    CAS  Google Scholar 

  • Kitagawa, I., Hori, K., Taniyama, T., Zhou, J.L., Yoshikawa, M. 1993a. Saponin and sapogenol. XLVII. On the constituents of the roots of Glycyrrhiza uralensis Fischer from Northeastern China. (1). Licorice-saponins A3, B2, and C2. Chem. Pharm. Bull. 41: 43–49.

    CAS  Google Scholar 

  • Kitagawa, I., Hori, K., Sakagami, M., Zhou, J.L., Yoshikawa, M. 1993b. Saponin and sapogenol. XLVIII. On the constituents of the roots of Glycyrrhiza uralensis Fischer from Northeastern China. (2). Licorice-saponins D3, E2, F3, G2, H2, J2, and K2. Chem. Pharm. Bull. 41:1337–1345.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, I., Hori, K., Sakagami, M., Hashiuchi, F., Yoshikawa, M., Ren, J. 1993c. Saponin and sapogenol. XLIX. On the constituents of the roots of Glycyrrhiza inflata Batalin from Xinjiang, China. Characterization of two sweet oleanane-type triterpene oligoglycosides, apioglycyrrhizin and araboglycyrrhizin. Chem. Pharm. Bull. 41: 1350–1357.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, I., Chen, W.Z., Taniyama, T., Harada, E., Hori, K., Kobayashi, M., Ren, J. 1998. Quantitative determination of constituents in various licorice roots by means of high performance liquid chromatography. Yakugaku Zasshi 118: 519–528.

    PubMed  CAS  Google Scholar 

  • Kinjo, J., Imagire, M., Udayama, M., Arao, T., Nohara, T. 1998. Structure-hepatoprotective relationships study of soyasaponins I-IV having soyasapogenol B as aglycone. Planta Med. 64: 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Kinjo, J., Yokomizo, K., Hirakawa, T., Shii, Y., Nohara, T., Uyeda, M. 2000. Anti-herpes virus activity of fabaceous triterpenoidal saponins. Biol. Pharm. Bull. 23: 887–889.

    Article  PubMed  CAS  Google Scholar 

  • Konoshima, T., Kokumai, M., Kozuka, M., Tokuda, H., Nishino, H., Iwashima, A. 1992. Anti-tumor-promoting activities of afromosin and soyasaponin I isolated from Wisteria brachybotrys. J. Nat. Prod. 55: 1776–1778.

    Article  PubMed  CAS  Google Scholar 

  • Kribii, R., Arro, M., Del Arco, A., Gonzalez, V., Balcells, L., Delourme, D., Ferrer, A., Karst, F., Boronat, A. 1997. Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase, involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur. J. Biochem. 249: 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Mahato, S.B., Sarkar, S.K., Poddar, G. 1988. Triterpenoid saponins. Phytochemistry 27:3037–3067.

    Article  CAS  Google Scholar 

  • Mahato, S.B., Nandy, A.K., Roy, G. 1992. Triterpenoids. Phytochemistry 31: 2199–2249.

    Article  PubMed  CAS  Google Scholar 

  • Mayaux, J.F., Bousseau, A., Pauwels, R., Huet, T., Henin, Y., Dereu, N., Evers, M., Soler, F., Poujade, C., Clercq, E.D., le Pecq, J.B. 1994. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc. Natl. Acad. Sci. USA 91: 3564–3568.

    Article  PubMed  CAS  Google Scholar 

  • Morita, M., Shibuya, M., Kushiro, T., Masuda, K., Ebizuka, Y. 2000. Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum): New αs-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 267: 3453–3460.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K., Akashi, T., Aoki, T., Kawaguchi, K., Ayabe, S. 1999. Induction of isoflavonoid and retrochalcone branches of the flavonoid pathway in cultured Glycyrrhiza echinata cells treated with yeast extract. Biosci. Biotech. Biochem. 63: 1618–1620.

    Article  CAS  Google Scholar 

  • Nakashima, H., Okubo, K., Honda, Y., Tamura, T., Matsuda, S., Yamamoto, N. 1989. Inhibitory effect of glycosides like saponin from soybean on infectivity of HIV in vitro. AIDS 3: 655–658.

    Article  PubMed  CAS  Google Scholar 

  • Nieman, C. 1959. Licorice. Adv. Food Res. 7: 339–381.

    Google Scholar 

  • Nomura, T., Fukai, T. 1998. Phenolic constituents of licorice (Glycyrrhiza species). In: Herz, W., Kirby, G.W., Moore, R.E., Steglich, W., Tamm, C. (Eds.) Progress in the Chemistry of Organic Natural Products, Vol. 73, Springer Wien, New York, pp. 1–140.

    Google Scholar 

  • Ohminami, H., Kimura, Y., Okuda, H., Arichi, S., Yoshikawa, M., Kitagawa, I. 1984. Effects of soyasaponins on liver injury induced by highly peroxidized fat in rats. Planta Med. 50:440–441.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G.W., Tsay, Y.H., Kienzle, B.K., Smith-Monroy, C.A., Bishop, R.W. 1993. Conservation between human and fungal squalene synthases: similarities in structure, function, and regulation. Mol. Cell. Biol. 13: 2706–2717.

    PubMed  CAS  Google Scholar 

  • Saitoh, T., Shibata, S. 1969. Chemical studies on the oriental plant drugs. XXII. Some new constituents of licorice root. (2). Glycerol, 5-O-methylglycerol and isoglycerol. Chem. Pharm. Bull. 17: 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Sawai, S., Shindo, T., Sato, S., Kaneko, T., Tabata, S., Ayabe, S., Aoki, T. 2006. Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247–257.

    Article  CAS  Google Scholar 

  • Shibano, M., Nukui, H., Kita, S., Kusano, G., Shibata, T., Watanabe, H., Ohashi, H. 1999. Studies on index compounds for HPLC analysis of Glycyrrhiza macedonica. Nat. Med. 53: 166–172.

    CAS  Google Scholar 

  • Shibata, S. 2000. A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120: 849–862.

    PubMed  CAS  Google Scholar 

  • Shibuya, M., Hoshino, M., Katsube, Y., Hayashi, H., Kushiro, T., Ebizuka, Y. 2006. Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS J. 273: 948–959.

    Google Scholar 

  • Suzuki, H., Achnine, L., Xu, R., Matsuda, S.P.T., Dixon, R.A. 2002. A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J. 32: 1033–1048.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Reddy, M.S.S., Naoumkina, M., Aziz, N., May, G.D., Huhman, D.V., Sumner, L.W., Blount, J.W., Mendes, P., Dixon, R.A. 2005. Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 220: 696–707.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, T., Baba, J., Konomi, K., Shimazaki, Y., Takahashi, N., Furuya, M. 1982. Identification of a triterpenoid saponin in etiolated pea shoots as phytochrome killer. Plant Cell Physiol. 23: 265–271.

    CAS  Google Scholar 

Download references

Acknowledgments

This research is supported in part by Grants-in-Aid for Scientific Research to H. H. (07780500, 09771930, 13780470) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hayashi, H. (2009). Molecular Biology of Secondary Metabolism: Case Study for Glycyrrhiza Plants. In: Recent Advances in Plant Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0194-1_5

Download citation

Publish with us

Policies and ethics