Regulating Phytonutrient Levels in Plants – Toward Modification of Plant Metabolism for Human Health



Plants constitute a major component of our diet, providing pigments and additional phytonutrients that are thought to be essential for maintenance of human health and are therefore also referred to as functional metabolites. Several fruit and vegetable species already contain high levels of several of these ingredients, while others do not. Nevertheless, efforts have been devoted to increasing and diversifying the content of phytonutrients, such as carotenoids, flavonoids, and vitamins, even in plants that normally produce high levels of such nutritional components. These efforts rely on transgenic and non-transgenic approaches which have exposed complex regulation mechanisms required for increasing the levels of functional metabolites in plants. The study of these regulatory mechanisms is essential to expedite improvement of levels of these metabolites in fruits, vegetables, cereals, legumes, and starchy roots or tubers. Such improvement is important for the following reasons: (1) to increase the efficiency of the industrial extraction of these compounds that are later being used as natural food supplements or fortifiers and as a source of natural colors to replace the chemical alternatives; (2) to improve and diversify the diet in populations of developing countries, where malnutrition may occur through lack of variety in the diet; (3) to provide fresh agricultural products such as fruits and vegetables highly enriched with certain phytonutrients to possibly substitute the chemically synthesized food supplements and vitamins; and (4) to provide an array of new and attractive colors to our diet.

Three basic approaches to modifying a biosynthetic pathway to increase amounts of desirable phytonutrients are available: (1) manipulation of pathway flux, including increasing, preventing, or redirecting flux into or within the pathway; (2) introduction of novel biosynthetic activities from other organisms via genetic engineering; and (3) manipulation of metabolic sink to efficiently sequester the end-products of particular metabolic pathways. These approaches have been effectively demonstrated in relation to the flavonoid and carotenoid biosynthetic pathways in tomato (Solanum lycopersicum). This chapter is therefore focused on carotenoids and flavonoids, their importance to human nutrition, and approaches used to induce, regulate, and diversify their content in tomato fruits. In addition, several examples of outstanding approaches employed to modulate carotenoid content in other plant species will also be given.


Tomato Fruit Carotenoid Accumulation Lycopene Content Carotenoid Biosynthetic Pathway Flavonoid Biosynthetic Pathway 



The author would like to thank Dr. Yaakov Tadmor from the Institute of Plant Sciences, the Volcani Center, Israel, for his contribution of tomato fruit photos to this chapter. The author also thanks Dr. Li Li from the USDA-ARS, Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, NY 14853, USA, for his contribution of cauliflower curd photos.

The purple smudge photo was kindly provided by Jim Myers and Peter Boches, Department of Horticulture, Oregon State University, USA.

The transgenic tomato and tobacco plants presented herein were generated as part of the M.Sc. theses of Miss Maya Sapir and Mr. Amir Butbool, under the guidance of the author, Dr. Michal Oren-Shamir and Dr. Moshe Reuveni and with the assistance of Dr. Dalia Evenor.


  1. Bando, N., Wakamatsu, S., Terao, J. 2007. Effect of an excessive intake of quercetin on the vitamin E level and antioxidative enzyme activities of mouse liver under paraquat-induced oxidative stress. Biosci. Biotechnol. Biochem. 71: 2569–2572.PubMedGoogle Scholar
  2. Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M.D., Benvenuto, G., Bowler, C., Genschik, P., Hellmann, H. 2006. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J. 47: 591–603.PubMedGoogle Scholar
  3. Beyer, P. 1989. Carotene biosynthesis in daffodil chromoplasts: on the membrane integral desaturation and cyclization reactions. In: Boyer, C.D., Shannon, J.C., Hardison, R.C. (Eds.). Physiology, Biochemistry, and Genetics of Nongreen Plastids. Rockville, MD: Am. Soc. of Plant Physiologists. pp. 157–170.Google Scholar
  4. Beyer, P., Kroncke, U., Nievelstein, V. 1991. On the mechanism of the lycopene isomerase cyclase reaction in Narcissus pseudonarcissus L. chromoplasts. J. Biol. Chem. 266: 17072–17078PubMedGoogle Scholar
  5. Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R., Potrykus, I. 2002. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132: 506S–510S.PubMedGoogle Scholar
  6. Bino, R.J., de Vos, C.H.R, Lieberman, M., Hall, R.D., Bovy, A., Jonker, H.H., Tikunov, Y., Lommen, A., Moco, S., Levin, I. 2005. The light-hyperresponsive high pigment-2 dg mutation of tomato: alterations in the fruit metabolome. New Phytol. 166: 427–438.PubMedGoogle Scholar
  7. Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Almenar Pertejo, M., Muir, S., Collins, G., Robinson, S., Verhoeyen, M., Hughes, S., Santos-Buelga, C., van Tunen, A. 2002. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14: 2509–2526.PubMedGoogle Scholar
  8. Bohm, B. 1998. Introduction of flavonoids. Harwood Academic Publishers, Singapore.Google Scholar
  9. Britton, G. 1995. Structure and properties of carotenoids in relation to function. FASEB J. 9: 1551–1558.PubMedGoogle Scholar
  10. Britton, G. 1998. Overview of carotenoid biosynthesis. In: Britton, G., Liaaen Jensen, S., Pfander, H. (Eds.). Carotenoids. Birkhauser, Basel, Switzerland pp. 13147.Google Scholar
  11. Brouillard, R., Dangles O. 1994. Flavonoids and flower colour. In: Harborne, J.B. (Ed). The Flavonoids: Advances in Research since 1986. Chapman and Hall, London, pp. 565–588.Google Scholar
  12. Brouillard, R., Figueiredo, P., Elhabiri, M., Dangles, O. 1997. Molecular interactions of phenolic compounds in relation to the colour of fruit and vegetables. In: Thomas-Barberan, F. (Ed). Phytochemistry of Fruits and Vegetables. Oxford University Press, New York, USA. pp. 29–49.Google Scholar
  13. Carol, P., Stevenson, D., Bisanz, C., Breitenbach, J., Sandmann, G., Mache, R., Coupland, G., Kuntz, M. 1999. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11: 5768.PubMedGoogle Scholar
  14. Chen, H., Shen, Y., Tang, X., Yu, Y., Wang, J., Guo, L., Zhang, Y., Zhang, H., Feng, S., Strickland, E., Zheng, N., Deng, X.W. 2006. Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18: 1991–2004.PubMedGoogle Scholar
  15. Chew, B.P., Park, J.S. 2004. Carotenoid action on the immune response. J. Nutr. 134: 257S–261S.PubMedGoogle Scholar
  16. Choi, S.U., Ryu, S.Y., Yoon, S.K., Jung, N.P., Park, S.H., Kim, K.H., Choi, E.J., Lee, C.O. 1999. Effects of flavonoids on the growth and cell cycle of cancer cells. Anticancer Res. 19: 52295233.PubMedGoogle Scholar
  17. Chory, J. 1993. Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet. 9: 167–172.PubMedGoogle Scholar
  18. Connolly, J.D., Hill, R.A. 1992. Dictionary of Terpenoids. Chapman and Hall, New York, USA.Google Scholar
  19. Cook, N.C., Samman, S. 1996. Flavonoids: chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7: 6676.Google Scholar
  20. Corder, R., Mullen, W., Khan, N.Q., Marks, S.C., Wood, E.G., Carrier, M.J., Crozier A. 2006. Oenology: red wine procyanidins and vascular health. Nature 444: 566.PubMedGoogle Scholar
  21. Cseke, L.J., Kirakosyan, A., Kaufman, P.B, Warber, S., Duke, J.A., Brielmann, H.L. 2006. Natural products from plants. Second Edition, CRC Press/Taylor & Francis Group: Boca Raton, FLGoogle Scholar
  22. Cunningham, F., Schiff, J. 1985. Photoisomerization of delta-carotene stereoisomers in cells of Euglena gracillis mutant W3BUL and in solution. Photochem. Photobiol. Sci. 42: 295307.Google Scholar
  23. Cunningham, F.X., Gantt, E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 557583.PubMedGoogle Scholar
  24. Cunningham, F.X. 2002. Regulation of carotenoid synthesis and accumulation in plants. Pure Appl. Chem. 74: 14091417.Google Scholar
  25. Cuttriss, A,J., Pogson, B.J. 2006. Carotenoids. In: Wise, R.R., Hoober, J.K. (Eds.). The Structure and Function of Plastids. Dordrecht, The Netherlands: Springer. pp. 315–334.Google Scholar
  26. Davies, J.N., Hobson G.E. 1981. The constituents of tomato fruit – the influence of environment, nutrition, and genotype. Crit. Rev. Food. Sci. Nutr. 15: 205–280.PubMedGoogle Scholar
  27. Davies, K.M. 2007. Genetic modification of plant metabolism for human health benefits. Mutat Res. 622: 122–137.PubMedGoogle Scholar
  28. Davison, P.A., Hunter, C.N., Horton, P. 2002. Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203206.PubMedGoogle Scholar
  29. Davuluri, G.R., van Tuinen, A., Mustilli, A.C., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Pennings, H.M., Bowler, C. 2004. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J. 40: 344–354.PubMedGoogle Scholar
  30. Davuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M., Bowler, C. 2005. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 23: 825–826.Google Scholar
  31. DellaPenna, D., Pogson, B.J. 2006. Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57: 711–738.PubMedGoogle Scholar
  32. Dharmapuri, S., Rosati, C., Pallara, P., Aquilani, R., Bouvier, F., Camara, B., Giuliano, G. 2002. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett. 519: 30–34.PubMedGoogle Scholar
  33. Di Mascio, P., Kaiser, S., Sies, H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532–538.PubMedGoogle Scholar
  34. Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., Giuliano, G. 2007. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2: e350.PubMedGoogle Scholar
  35. Dixon, R.A., Paiva, N.L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell. 7: 1085–1097.PubMedGoogle Scholar
  36. Dixon, R.A. 2005. Engineering of plant natural product pathways. Curr. Opin. Plant Biol. 8: 329336.PubMedGoogle Scholar
  37. Dooner, H.K., Robbins, T.P., Jorgensen, R.A. 1991. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25: 173–199.PubMedGoogle Scholar
  38. Duarte, J., Perez-Palencia, R., Vargas, F., Ocete, M.A., Perez-Vizcaino, F., Zarzuelo, A., Tamargo, J. 2001. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol. 133: 117–124.PubMedGoogle Scholar
  39. Dugas, A.J., Castaneda Acosta, J., Bonin, G.C., Price, K.L., Fischer, N.H., Winston, G.W. 2000. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: Structure-activity relationships. J. Nat. Prod. 63: 327331.PubMedGoogle Scholar
  40. Duthie, G., Crozier, A. 2000. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 11: 4347.PubMedGoogle Scholar
  41. Elomaa, P., Honkanen, J., Puska, R., Seppänen, P., Helariutta, Y., Mehto, M., Kotilainen, M., Nevalainen, L., Teeri T.H. 1993. Agrobacterium mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/Technology 11: 508–511.Google Scholar
  42. Enfissi, E.M.A., Fraser, P.D., Lois, L-M., Boronat, A., Schuch, W., Bramley, P.M. 2005. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol. J. 3: 17–27.PubMedGoogle Scholar
  43. Ferrières, J. 2004. The French paradox: lessons for other countries. Heart 90:107–111.PubMedGoogle Scholar
  44. Fiehn, O. 2002. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol. 48: 155–171.PubMedGoogle Scholar
  45. Foolad, M.R. 2007. Genome mapping and molecular breeding of tomato. International J. of Plant Genomics 2007: 1–52.Google Scholar
  46. Formica, J.V., Regelson, W. 1995. Review of the biology of quercetin and related bioflavonoids. Fd. Chem. Toxic. 33: 10611080.Google Scholar
  47. Frankel, E.N. 1999. Food antioxidants and phytochemicals: Present and future perspectives. Fett. Lipid 101: 450455.Google Scholar
  48. Fraser, P.D., Romer, S., Shipton, C.A., Mills, P.B., Kiano, J.W., Misawa, N., Drake, R.G., Schuch, W., Bramley, P.M. 2002. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci. USA. 99: 1092–1097.PubMedGoogle Scholar
  49. Fraser, P.D., Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43: 228–265.PubMedGoogle Scholar
  50. Fray, R.G., Grierson, D. 1993. Identification and genetic-analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 22: 589–602.PubMedGoogle Scholar
  51. Fray, R.G., Wallace, A., Fraser, P.D., Valero, D., Hedden, P., Bramley, P.M., Grierson, D. 1995. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. The Plant J. 8: 693–701.Google Scholar
  52. Fuhrman, B., Volkova, N., Rosenblat, M., Aviram, M. 2000. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxid Redox Signal 2: 491–506.PubMedGoogle Scholar
  53. Galati, G., O’Brien, P.J. 2004. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37: 287303.PubMedGoogle Scholar
  54. Galili, G., Galili, S., Lewinsohn, E., Tadmor Y. 2002. Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds. Crit. Rev. in Plant Sci. 21: 167204.Google Scholar
  55. Galpaz, N., Wang, Q., Menda, N., Zamir, D., Hirschberg, J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 53: 717–730.Google Scholar
  56. Gerster, H. 1997. The potential role of lycopene for human health. J. Am. Coll. Nutr. 16: 109126.Google Scholar
  57. Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Fiore, A., Tavazza, M., Giuliano, G. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137: 199–208.PubMedGoogle Scholar
  58. Giorgiev, C. 1972. Anthocyanin fruit tomato. Rep. Tomato. Genet. Coop. 22: 10.Google Scholar
  59. Goff, S.A., Klein, T.M., Roth, B.A., Fromm, M.E., Cone, K.C., Radicella, J.P., Chandler, V.L. 1990. Transactivation of anthocyanin biosynthesis genes following transfer of B regulatory genes into maize tissues. EMBO J. 9: 2517–2522.PubMedGoogle Scholar
  60. Guohua, C., Sofic, E., Prior, R.L. 1997. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med. 22: 749760Google Scholar
  61. Harborne, J.B. 1986. Nature, distribution and function of plant flavonoids. Prog. Clin. Biol. Res. 213: 15–24.PubMedGoogle Scholar
  62. Harborne, J.B. 1994. The flavonoids, advances in research since 1986. Chapman & Hall, London.Google Scholar
  63. Havaux, M., Niyogi, K.K. 1999. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Nat. Acad. Sci. USA 96: 87628767.PubMedGoogle Scholar
  64. Heber, D., Bowerman, S. 2001. Applying science to changing dietary patterns. J. Nutr. 131: 3078S–3081S.PubMedGoogle Scholar
  65. Helariutta, Y., Elomaa, P., Kotilainen, M., Seppänen, P., Teeri, T. 1993. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae) Plant Mol. Biol. 22: 183–193.Google Scholar
  66. Helariutta, Y., Elomaa, P., Kotilainen, M., Giersbach, R.J., Schröder, J., Teeri, T.H. 1995. Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae). Plant Mol. Biol. 28: 47–60.PubMedGoogle Scholar
  67. Hertog, M.G., Feskens, E.J., Hollman, P.C., Katan, M.B., Kromhout, D. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 342: 1007–1011.PubMedGoogle Scholar
  68. Hertog, M.G.L., Hollman, P.C.H. 1996. Potential health effects of the dietary flavonol quercetin. Eur. J. Clin. Nutr. 50: 6371.PubMedGoogle Scholar
  69. Hirschberg, J. 2001. Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol. 4: 210218.PubMedGoogle Scholar
  70. Hollman, P.C.H., Katan, M.B. 1999. Health effects and bioavailability of dietary flavonols. Free Radical Res. 31: S75S80.Google Scholar
  71. Holt, N.E., Fleming, G.R., Niyogi, K.K. 2004. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43: 82818289.PubMedGoogle Scholar
  72. Holt, N.E., Zigmantas, D., Valkunas, L., Li, X.P., Niyogi, K.K., Fleming, G.R. 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307: 433436.PubMedGoogle Scholar
  73. Holton, T.A., Cornish, E.C. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071–1083.PubMedGoogle Scholar
  74. Howitt, C.A., Pogson, B.J. 2006. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ. 29: 435445.PubMedGoogle Scholar
  75. Hu, J., McCall, C.M., Ohta, T. Xiong, Y. 2004. Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nat. Cell. Biol. 6: 10031009.PubMedGoogle Scholar
  76. Isaacson, T., Ronen, G., Zamir, D., Hirschberg, J. 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-Carotene and xanthophylls in plants. Plant Cell 14: 333–342.PubMedGoogle Scholar
  77. Ishida, B.K., Roberts, J.S., Chapman, M.H., Burri, B.J. 2007. Processing tangerine tomatoes: effects on lycopene-isomer concentrations and profile. J. Food Sci. 72: C307–C312.PubMedGoogle Scholar
  78. Janssen, K., Mensink, R.P., Cox, F.J., Harryvan, J.L., Hovenier, R., Hollman, P.C., Katan, M.B. 1998. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: Results from an in vitro and a dietary supplement study. Am. J. Clin. Nutr. 67: 255–262.PubMedGoogle Scholar
  79. Johnson, E.J. 2002. The role of carotenoids in human health. Nutr. Clin. Care. 5: 56–65.PubMedGoogle Scholar
  80. Jones, C.M., Mes, P., Myers, J.R. 2003. Characterization and inheritance of the Anthocyanin fruit (Aft) tomato. J. Hered. 94: 449–456.PubMedGoogle Scholar
  81. Joseph, J.A., Nadeau, D.A., Underwood, A. 2003. The color code: A revolutionary eating plan for optimum health. Hyperion Books, Barnes and Noble publishers.Google Scholar
  82. Josse, E.M., Simkin, A.J., Gaffé, J., Labouré, A.M., Kuntz, M., Carol, P. 2000. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol. 123: 1427–1436.PubMedGoogle Scholar
  83. Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M. 1999. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci. Biotechnol. Biochem. 63: 896–899.PubMedGoogle Scholar
  84. Kawanishi, S., Oikawa, S., Murata, M. 2005. Evaluation for safety of antioxidant chemopreventive agents. Antioxid. Redox Signal. 7: 17281739.PubMedGoogle Scholar
  85. Keli, S.O., Hertog, M.G., Feskens, E.J., Kromhout, D. 1996. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: The Zutphen study. Arch. Intern. Med. 156: 637642.PubMedGoogle Scholar
  86. Key, T.J., Schatzkin, A., Willett, W.C., Allen, N.E., Spencer, E.A., Travis, R.C. 2004. Diet, nutrition and the prevention of cancer. Public Health Nutr. 7: 187–200.PubMedGoogle Scholar
  87. Khachik, F., Carvalho, L., Bernstein, P.S., Muir, G.J., Zhao, D.Y., Katz, N.B. 2002. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp. Biol. Med. (Maywood). 227: 845–851.Google Scholar
  88. Koes, R.E., Quattrocchio, F., Mol, J.N.M. 1994. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16: 123–132.Google Scholar
  89. Kohlmeier, L., Kark, J.D., Gomez-Gracia, E., Martin, B.C., Steck, S.E., Kardinaal, A.F., Ringstad, J., Thamm, M., Masaev, V., Riemersma, R., Martin-Moreno, J.M., Huttunen, J.K., Kok, F.J. 1997. Lycopene and myocardial infarction risk in the EURAMIC Study. Am. J. Epidemiol. 146: 618–626.PubMedGoogle Scholar
  90. Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., Nahon, S., Shlomo, H., Chen, L., and Levin, I. 2007. Transcriptional profiling of high pigment-2 dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant physiol. 145: 389–401.PubMedGoogle Scholar
  91. Kulheim, C., Agren, J., Jansson, S. 2002. Rapid regulation of light harvesting and plant fitness in the field. Science 297: 9193.PubMedGoogle Scholar
  92. Le Gall, G., DuPont, M.S., Mellon, F.A., Davis, A.L., Collins, G.J., Verhoeyen, M.E., Colquhoun, I.J. 2003. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric Food Chem. 51: 2438–2446.PubMedGoogle Scholar
  93. Lean, M.E., Noroozi, M., Kelly, I., Burns, J., Talwar, D., Sattar, N., Crozier, A. 1999. Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes 48: 17681.PubMedGoogle Scholar
  94. Levy, J., Bosin, E., Feldman, B., Giat, Y., Miinster, A., Danilenko, M., Sharoni, Y. 1995. Lycopene is a more potent inhibitor of human cancer cell proliferation than either α-carotene or β-carotene. Nutr. Cancer. 24: 257–266.PubMedGoogle Scholar
  95. Levin, I., Frankel, P., Gilboa, N., Tanny, S., Lalazar, A. 2003. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor. Appl. Genet. 106: 454–460.PubMedGoogle Scholar
  96. Levin, I., Lalazar, A., Bar, M., Schaffer, A.A. 2004. Non-GMO fruit factories: strategies for modulating metabolic pathways in the tomato fruit. Industrial Crops and Products 20: 2936.Google Scholar
  97. Levin, I., de Vos, C.H.R., Tadmor, Y., Bovy, A., Lieberman, M., Oren-Shamir, M., Segev, O., Kolotilin, I., Keller, M., Ovadia, R., Meir, A., Bino, R.J. 2006. High pigment tomato mutants- more than just lycopene (a review). Israel J. of Plant Sci. 54: 179–190.Google Scholar
  98. Li, L., Van Eck, J. 2007. Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res. 16: 581585.PubMedGoogle Scholar
  99. Lichtenthaler, H.K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 4765.PubMedGoogle Scholar
  100. Lieberman, M., Segev, O., Gilboa, N., Lalazar, A., Levin, I. 2004. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor. Appl. Genet. 108: 1574–1581.PubMedGoogle Scholar
  101. Lila, M.A. 2007. From beans to berries and beyond: teamwork between plant chemicals for protection of optimal human health. Ann. N.Y. Acad. Sci. 1114: 372–380.PubMedGoogle Scholar
  102. Liu, Y., Roof, S., Ye, Z., Barry, C., van Tuinen, A., Vrebalov, J., Bowler, C., Giovannoni, J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. USA 101: 9897–9902.PubMedGoogle Scholar
  103. Liu, Y.S., Gur, A., Ronen, G., Causse, M., Damidaux, R., Buret, M., Hirschberg, J., Zamir, D. 2003. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 1:195–207.PubMedGoogle Scholar
  104. Lloyd, A.M., Walbot V., Davis R.W. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258: 1773–1775.PubMedGoogle Scholar
  105. Lokstein, H., Tian, L., Polle, J.E, DellaPenna, D. 2002. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: Altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochim. Biophys. Acta 1553: 309319.PubMedGoogle Scholar
  106. Lu, S., Eck Van, J., Zhou, X., Lopez, A.B., O’Halloran, D.M., Cosman, K.M., Conlin, B.J., Paolillo, D.J., Garvin, D.F., Vrebalov, J., Kochian, L.V., Kupper, H., Earle, E.D., Cao, J., Li, L. 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18: 35943605.PubMedGoogle Scholar
  107. Macheix, J.J., Fleuriet, A., Billot, J. 1990. Fruit Phenolics. Boca Raton, FL, CRC Press.Google Scholar
  108. Mackinney, G., Rick, C.M., Jenkins, J.A. 1956. The phytoene content of tomatoes. Proc. Natl. Acad. Sci. USA. 42: 404–408.PubMedGoogle Scholar
  109. Manach, C., Regerat, F., Texier. O., Agullo, G., Demigne, C., Remesy, C. 1996. Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr. Res. 16: 517544.Google Scholar
  110. Martin, C., Prescott, A., Mackay, S., Bartlett, J., Vrijlandt, E. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1: 37–49.PubMedGoogle Scholar
  111. Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J., Wagner, D.R.Y. 2003. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15: 16891703.PubMedGoogle Scholar
  112. Mayne, S.T. 1996. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J. 10: 690–701.PubMedGoogle Scholar
  113. McClintock, B. 1967. Regulation of patter of gene expression by controlling elements in maize. Carnegie Inst. Yearb. 65: 568–578.Google Scholar
  114. Mehta, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K., Mattoo, A.K. 2002. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat. Biotechnol. 20: 613–618.PubMedGoogle Scholar
  115. Metodiewa, D., Jaiswal, A.K., Cenas, N., Dickancaite, E., Segura-Aguilar, J. 1999. Quinone may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic. Biol. Med. 26: 107116.PubMedGoogle Scholar
  116. Mochizuki, T., Kamimura, S. 1984. Inheritance of vitamin C content and its relation to other characters in crosses between hp and og varieties of tomatoes. In: Synopsis of the 9th meeting of the Eucarpia Tomato Working Group, Wageningen, the Netherlands, 22–24 May 1984, pp. 8–13.Google Scholar
  117. Mol, J., Grotewold, E., Koes, R. 1998. How genes paint flowers and seeds? Trends Plant Sci. 3: 212–217.Google Scholar
  118. Muir, S.R., Collins, G.J., Robinson, S., Hughes, S., Bovy, A., Ric de Vos, C.H.R., van Tunen, A.J., Verhoeyen, M.E. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol. 19: 470–474.PubMedGoogle Scholar
  119. Mustilli, A.C., Fenzi, F., Ciliento, R., Alfano, F., Bowler, C. 1999. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11: 145–157.PubMedGoogle Scholar
  120. Nakamura, N., Fukuchi-Mizutani, M., Miyazaki, K., Suzuki, K., Tanaka, Y. 2006. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotech. 23: 1317.Google Scholar
  121. Ng, T.B., Liu, F., Wang, Z.T. 2000. Antioxidative activity of natural products from plants. Life Sci. 66: 709723.PubMedGoogle Scholar
  122. Ninu, L., Ahmad, M., Miarelli, C., Cashmore, A.R., Giuliano, G. 1999. Cryptochrome 1 controls tomato development in response to blue light. Plant J.18: 551–556.PubMedGoogle Scholar
  123. Niyogi, K.K. 1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 333359.Google Scholar
  124. Norris, S.R., Barrette, T.R., DellaPenna, D. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7: 21392149.PubMedGoogle Scholar
  125. Ogata, S., Miyake, Y., Yamamoto, K., Okumura, K., Taguchi, H. 2000. Apoptosis induced by the flavonoid from lemon fruit (Citrus limon BURM. f.) and its metabolites in HL-60 cells. Biosci. Biotechnol. Biochem. 64: 1075–1078.PubMedGoogle Scholar
  126. Olthof, M.R., Hollman, P.C., Vree, T.B., Katan, M.B. 2000. Bioavailabilities of quercetin-3-glucoside and quercetin-4’-glucoside do not differ in humans. J. Nutr. 130: 1200–1203.PubMedGoogle Scholar
  127. Omenn, G.S. 1998. Chemoprevention of lung cancer: the rise and demise of beta-carotene. Annu. Rev. Public Health 19: 73–99.PubMedGoogle Scholar
  128. Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L., Drake, R. 2005 Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23: 482487.PubMedGoogle Scholar
  129. Park, H., Kreunen, S.S., Cuttriss, A.J., DellaPenna, D., Pogson, B.J. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14: 321332.PubMedGoogle Scholar
  130. Parr, A.J., Bolwell, G.P. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 80: 985–1012.Google Scholar
  131. Penniston, K.L., Tanumihardjo, S.A. 2006. The acute and chronic toxic effects of vitamin A. Am. J. Clin. Nutr. 83: 191–201.PubMedGoogle Scholar
  132. Peters, J.L., van Tuinen, A., Adamse, P., Kendrick, R.E., Koornneef, M. 1989. High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J. Plant Physiol. 134: 661666.Google Scholar
  133. Pogson, B., McDonald, K., Truong, M., Britton, G., DellaPenna, D. 1996. Arabidopsis carotenoid mutants demonstrate lutein is not essential for photosynthesis in higher plants. Plant Cell 8: 162739.PubMedGoogle Scholar
  134. Pogson, B.J., Niyogi, K.K., Björkman, O., DellaPenna, D. 1998. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Nat. Acad. Sci. USA 95: 1332413329.PubMedGoogle Scholar
  135. Proteggente, A.R., Pannala, A.S., Paganga, G., Van Buren. L., Wagner, E., Wiseman, S., Van De Put, F., Dacombe. C., Rice-Evans, C.A. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 36: 217233.PubMedGoogle Scholar
  136. Rao, A.V., Agarwal, S. 1998. Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr. Cancer 31: 199–203.PubMedGoogle Scholar
  137. Rao, A.V. 2002. Lycopene, tomatoes, and the prevention of coronary heart disease. Exp. Biol. Med. (Maywood). 227: 908–913.Google Scholar
  138. Riboli, E., Norat, T. 2003. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 78: 559S–569S.PubMedGoogle Scholar
  139. Rice-Evans, C.A., Miller, N.J., Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 20: 933–956.PubMedGoogle Scholar
  140. Rice-Evans, C.A., Miller, N.J., Paganga, G., Miller, N. 1997. Antioxidant properties of phenolic compounds: The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Trends Plant Sci. 2: 152159.Google Scholar
  141. Rick, C.M. 1964. Biosystematic studies on Galapagos Island tomatoes. Occas. Paper Calif. Acad. Sci. 44: 59.Google Scholar
  142. Rick, C.M., Cisneros, P., Chetelat, R.T., Deverona, J.W. 1994. Abg, a gene on chromosome 10 for purple fruit derived from S. lycopersiciodes. Rep. Tomato Genet. Coop. 44: 2930.Google Scholar
  143. Robards, K., Antolovich, M. 1997. Analytical chemistry of fruit bioflavonoids. Analyst 122: 11R–34R.Google Scholar
  144. Romer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W., Bramley, P.M. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol. 18: 666–669.PubMedGoogle Scholar
  145. Ronen, G., Cohen, M., Zamir, D., Hirschberg, J. 1999. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 17: 341–351.PubMedGoogle Scholar
  146. Ronen, G., Carmel-Goren, L., Zamir, D., Hirschberg, J. 2000. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta (B) and old-gold (og) colour mutations in tomato. Proc. Natl. Acad. Sci. USA 97: 11102–11107.PubMedGoogle Scholar
  147. Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B., Giuliano, G. 2000. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 24: 413–419.PubMedGoogle Scholar
  148. Ross, J.A., Kasum, C.M. 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 22: 19–34.PubMedGoogle Scholar
  149. Sapir, M., Oren-Shamir, M., Ovadia, R., Reuveni, M., Evenor, D., Tadmor, Y., Nahon, S., Shlomo, H., Chen, L., Meir, A., Levin, I. 2008. Molecular Aspects of Anthocyanin fruit Tomato in Relation to high pigment-1. J. Hered. 99: 292–303.Google Scholar
  150. Schijlen, E.G., de Vos, R.C.H, van Tunen, A.J., Bovy, A.G. 2004. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65: 2631–2648.PubMedGoogle Scholar
  151. Schijlen, E., Ric de Vos, C.H., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., Martens, S., Bovy, A. 2006. Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol. J. 4: 433–444.PubMedGoogle Scholar
  152. Schroeder, D.F., Gahrtz, M., Maxwell, B.B., Cook, R.K., Kan, J.M., Alonso, J.M., Ecker, J.R., Chory, J. 2002. De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr. Biol. 12: 1462–1472.PubMedGoogle Scholar
  153. Shewmaker, C.K., Sheehy, J.A., Daley, M., Colburn, S., Ke, D.Y. 1999. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 20: 401412X.PubMedGoogle Scholar
  154. Shih, H., Pickwell, G.V., Quattrochi. L.C. 2000. Differential effects of flavonoid compounds on tumor promoter-induced activation of the human CYP1A2 enhancer. Arch. Biochem. Biophys. 373: 287294.PubMedGoogle Scholar
  155. Shirley, B.W., Kubasek, W.L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F., Goodman, H.M. 1995. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8: 659–671.PubMedGoogle Scholar
  156. Sies, H., Stahl, W. 2003. Non-nutritive bioactive constituents of plants: lycopene, lutein and zeaxanthin. Int. J. Vitam. Nutr. Res. 73: 95–100.PubMedGoogle Scholar
  157. Simkin, A.J., Gaffé, J., Alcaraz, J.P., Carde, J.P., Bramley, P.M., Fraser, P.D., Kuntz, M. 2007. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68: 1545–1556.PubMedGoogle Scholar
  158. Singh, R.P., Agarwal, R. 2006. Natural flavonoids targeting deregulated cell cycle progression in cancer cells. Curr. Drug Targets 7: 345–354.PubMedGoogle Scholar
  159. Skibola, C.F., Smith, M.T. 2000. Potential health impact of excessive flavonoid intake. Free Radic. Biol. Med. 29: 375383.Google Scholar
  160. Sloan, A.E. 2000. The top ten functional food trends. Food Technol. 54: 33–62.Google Scholar
  161. Srinath Reddy, K., Katan, M.B. 2004. Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Public Health Nutr. 7: 167–186.PubMedGoogle Scholar
  162. Stahl, W., Sies, H. 1996. Lycopene: a biologically important carotenoid for humans? Arch. Biochem. Biophys. 336:1–9.Google Scholar
  163. Steinmetz, K.A., Potter, J.D. (1996) Vegetables, fruit, and cancer prevention: A review. J. Am. Diet Assoc. 96: 10271039.PubMedGoogle Scholar
  164. Stevens, M.A., Rick, C.M. 1986. Genetics and breeding. In: Atherton, J.G., Rudich, J. (Eds.) The tomato crop: A scientific basis for improvement. Chapman and Hall, New York, USA pp. 35109.Google Scholar
  165. Stewart, A.J., Bozonnet, S., Mullen, W., Jenkins, G.I., Lean, M.E., Crozier, A. 2000. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 48: 2663–2669.PubMedGoogle Scholar
  166. Sugihara, N., Arakawa, T., Ohnishi, M., Furuno, K. 1999. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radical Biol. Med. 27:13131323.Google Scholar
  167. Taylor, L.P., Briggs, W.R. 1990. Genetic regulation and photocontrol of anthocyanin accumulation in maize seedlings. Plant Cell 2: 115–127.PubMedGoogle Scholar
  168. Tomes, M.L., Quackenbush, F.L., Nelsom, O.E., North, B. 1953. The inheritance of carotenoid pigment systems in the tomato. Genetics 38: 117127.PubMedGoogle Scholar
  169. Tonelli, C., Consonni, G., Dellaporta, S.L., Viotti, A., Gavazzi, G. 1991. Molecular analysis of the maize anthocyanin regulatory locus Sn:Bol3, a light independent and tissue specific gene of maize. Mol. Gen. Genet. 199: 201–207.Google Scholar
  170. Trevisanato, S.I., Kim, Y.I. (2000) Tea and health. Nutr. Rev. 58: 110.PubMedGoogle Scholar
  171. Unlu, N.Z., Bohn, T., Francis, D., Clinton, S.K., Schwartz. S.J. 2007. Carotenoid absorption in humans consuming tomato sauces obtained from tangerine or high-β-carotene varieties of tomatoes. J. Agric. Food Chem. 55: 1597–1603.PubMedGoogle Scholar
  172. van Tuinen, A., Cordonnier-Prat, M-M., Pratt, L.H., Verkerk, R., Zabel, P., Koornneef, M. 1997. The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor. Appl. Genet. 94: 115122.PubMedGoogle Scholar
  173. van Tuinen, A., de Vos, C.H.R., Hall, R.D., Linus, H.W., van der Plas, L.H.W., Bowler, C., Bino, R.J. 2006. Use of metabolomics for identification of tomato genotypes with enhanced nutritional value derived from natural light-hypersensitive mutants. In: Plant genetic engineering Vol. 7: metabolic engineering and molecular farming–1. (Jaiwal PK ed). Studium Press, LLC, Huston, Texas, USA. pp. 240–256.Google Scholar
  174. van der Krol, A., Lenting, P., Veenstra, J., van der Meer, I., Koes R. 1988. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869.Google Scholar
  175. Verhoeyen, M.E., Bovy, A., Collins, G., Muir, S., Robinson, S., de Vos, C.H., Colliver, S. 2002. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exp. Bot. 53: 2099–2106.PubMedGoogle Scholar
  176. Wang, N., Fang. W., Han, H., Sui, N., Li, B., Meng, Q.-W. 2008. Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress. Physiol. Plant. 132: 384396.PubMedGoogle Scholar
  177. Wann, E.V., Jourdain, E.L., Pressey, R., Lyon, B.G. 1985. Effect of mutant genotypes hp og c and dg og c on tomato fruit quality. J. Am. Soc. Hortic. Sci. 110: 212–215.Google Scholar
  178. Wann, E.V. 1997. Tomato germplasm lines T4065, T4099, T5019, and T5020 with unique genotypes that enhance fruit quality. Hortic. Sci. 32: 747–748.Google Scholar
  179. Weisshaar, B., Jenkins, G.I. 1998. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251–257.PubMedGoogle Scholar
  180. Wertz, I.E., O’Rourke, K.M., Zhang, Z., Dornan, D., Arnott, D., Deshaies, R.J., Dixit, V.M. 2004. Human de-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303: 1371–1374.PubMedGoogle Scholar
  181. West, K.P.Jr. 2003. Vitamin A deficiency disorders in children and women. Food Nutr. Bull. 24: S78–S90.PubMedGoogle Scholar
  182. Willcox, J.K., Catignani, G.L., Lazarus, S. 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43: 1–18.PubMedGoogle Scholar
  183. Willits, M.G., Kramer, C.M., Prata, R.T., De Luca, V., Potter, B.G., Steffens, J.C., Graser, G. 2005. Utilization of the genetic resources of wild species to create a nontransgenic high flavonoid tomato. J Agric. Food Chem. 53: 1231–1236.PubMedGoogle Scholar
  184. Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485–493.PubMedGoogle Scholar
  185. Wintergerst, E.S., Maggini, S., Hornig, D.H. 2007. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 51: 301–323.PubMedGoogle Scholar
  186. Wu, K., Erdman, J.W., Jr., Schwartz, S.J., Platz, E.A., Leitzmann, M., Clinton, S.K., DeGroff, V., Willett, W.C., Giovannucci, E. 2004. Plasma and dietary carotenoids, and the risk of prostate cancer: a nested case-control study. Cancer Epidemiol. Biomarkers Prev. 13: 260–269.PubMedGoogle Scholar
  187. Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., Potrykus, I. 2000 Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303305.PubMedGoogle Scholar
  188. Yen, H.C., Shelton, B.A., Howard, L.R., Vrebalov, S.L.J., Giovanonni, J.J. 1997. The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor. Appl. Genet. 95: 1069–1079.Google Scholar
  189. Yonekura-Sakakibara, K., Saito, K. 2006. Review: Genetically modified plants for the promotion of human health. Biotechnol Lett. 28: 1983–1991.PubMedGoogle Scholar
  190. Zava, D.T., Duwe, G. 1997. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr. Cancer 27: 31–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Vegetable ResearchInstitute of Plant Sciences, The Volcani CenterBet DaganIsrael 50250

Personalised recommendations