Advertisement

Pharmacology of the Pulmonary Circulation

  • Cara Reimer
  • John Granton
Chapter

Abstract

The pulmonary vasculature is a complex system and studies of the effects of anesthetic drugs on this system are often contradictory. A balanced anesthetic technique with adherence to the hemodynamic goals of maintenance of right ventricular preload and right coronary perfusion is the safest choice for patients with PHTN. There are no absolute contraindications to most anesthetic drugs in patients with pulmonary hypertension. Inhaled pulmonary vasodilators can be used to optimize hemodynamic variables perioperatively, although effects on gas exchange are variable.

Keywords

Nitric Oxide Interstitial Lung Disease Lung Transplantation Pulmonary Artery Pressure Anesthetic Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CO

Cardiac output

(m)PAP

(Mean) pulmonary artery pressure

PHTN

Pulmonary hypertension

PVB

Paravertebral block

PVR(I)

Pulmonary vascular resistance (index)

SVR(I)

Systemic vascular resistance (index)

TEA

Thoracic epidural analgesia

References

  1. 1.
    Ramakrishna G, Sprung J, Ravi BS, Chandrasekaran K, McGoon MD. Impact of pulmonary hypertension on the outcomes of noncardiac surgery: predictors of perioperative morbidity and mortality. J Am Coll Cardiol. 2005;45(10):1691–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Lai HC, Wang KY, Lee WL, Ting CT, Liu TJ. Severe pulmonary hypertension complicates postoperative outcome of non-cardiac surgery. Br J Anaesth. 2007;99(2):184–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Granton J, Moric J. Pulmonary vasodilators – treating the right ventricle. Anesthesiol Clin. 2008;26(2):337–53. vii.PubMedCrossRefGoogle Scholar
  4. 4.
    Hirota K, Lambert DG. Ketamine: its mechanism(s) of action and unusual clinical uses. Br J Anaesth. 1996;77(4):441–4.PubMedGoogle Scholar
  5. 5.
    Baraka A, Harrison T, Kachachi T. Catecholamine levels after ketamine anesthesia in man. Anesth Analg. 1973;52(2):198–200.PubMedCrossRefGoogle Scholar
  6. 6.
    Lundy PM, Lockwood PA, Thompson G, Frew R. Differential effects of ketamine isomers on neuronal and extraneuronal catecholamine uptake mechanisms. Anesthesiology. 1986;64(3):359–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Maruyama K, Maruyama J, Yokochi A, Muneyuki M, Miyasaka K. Vasodilatory effects of ketamine on pulmonary arteries in rats with chronic hypoxic pulmonary hypertension. Anesth Analg. 1995;80(4):786–92.PubMedGoogle Scholar
  8. 8.
    Lee TS, Hou X. Vasoactive effects of ketamine on isolated rabbit pulmonary arteries. Chest. 1995;107(4):1152–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Balfors E, Haggmark S, Nyhman H, Rydvall A, Reiz S. Droperidol inhibits the effects of intravenous ketamine on central hemodynamics and myocardial oxygen consumption in patients with generalized atherosclerotic disease. Anesth Analg. 1983;62(2):193–7.PubMedGoogle Scholar
  10. 10.
    Levanen J, Makela ML, Scheinin H. Dexmedetomidine premedication attenuates ketamine-induced cardiostimulatory effects and postanesthetic delirium. Anesthesiology. 1995;82(5):1117–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth. 1989;36(2):186–97.PubMedCrossRefGoogle Scholar
  12. 12.
    Tweed WA, Minuck M, Mymin D. Circulatory responses to ketamine anesthesia. Anesthesiology. 1972;37(6):613–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Gooding JM, Dimick AR, Tavakoli M, Corssen G. A physiologic analysis of cardiopulmonary responses to ketamine anesthesia in noncardiac patients. Anesth Analg. 1977;56(6):813–6.PubMedGoogle Scholar
  14. 14.
    Williams GD, Philip BM, Chu LF, et al. Ketamine does not increase pulmonary vascular resistance in children with pulmonary hypertension undergoing sevoflurane anesthesia and spontaneous ventilation. Anesth Analg. 2007;105(6):1578–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Oklu E, Bulutcu FS, Yalcin Y, Ozbek U, Cakali E, Bayindir O. Which anesthetic agent alters the hemodynamic status during pediatric catheterization? Comparison of propofol versus ketamine. J Cardiothorac Vasc Anesth. 2003;17(6):686–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Heller AR, Litz RJ, Koch T. A fine balance – one-lung ventilation in a patient with Eisenmenger syndrome. Br J Anaesth. 2004;92(4):587–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Rees DI, Gaines III GY. One-lung anesthesia – a comparison of pulmonary gas exchange during anesthesia with ketamine or enflurane. Anesth Analg. 1984;63(5):521–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Aye T, Milne B. Ketamine anesthesia for pericardial window in a patient with pericardial tamponade and severe COPD. Can J Anaesth. 2002;49(3):283–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Kopka A, McMenemin IM, Serpell MG, Quasim I. Anaesthesia for cholecystectomy in two non-parturients with Eisenmenger’s syndrome. Acta Anaesthesiol Scand. 2004;48(6):782–6.PubMedCrossRefGoogle Scholar
  20. 20.
    McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53(17):1573–619.PubMedCrossRefGoogle Scholar
  21. 21.
    Trapani G, Altomare C, Liso G, Sanna E, Biggio G. Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem. 2000;7(2):249–71.PubMedGoogle Scholar
  22. 22.
    Kondo U, Kim SO, Nakayama M, Murray PA. Pulmonary vascular effects of propofol at baseline, during elevated vasomotor tone, and in response to sympathetic alpha- and beta-adrenoreceptor activation. Anesthesiology. 2001;94(5):815–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Edanaga M, Nakayama M, Kanaya N, Tohse N, Namiki A. Propofol increases pulmonary vascular resistance during alpha-adrenoreceptor activation in normal and monocrotaline-induced pulmonary hypertensive rats. Anesth Analg. 2007;104(1):112–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Kondo U, Kim SO, Murray PA. Propofol selectively attenuates endothelium-dependent pulmonary vasodilation in chronically instrumented dogs. Anesthesiology. 2000;93(2):437–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Ouedraogo N, Mounkaila B, Crevel H, Marthan R, Roux E. Effect of propofol and etomidate on normoxic and chronically hypoxic pulmonary artery. BMC Anesthesiol. 2006;6:2.PubMedCrossRefGoogle Scholar
  26. 26.
    Colvin MP, Savege TM, Newland PE, et al. Cardiorespiratory changes following induction of anaesthesia with etomidate in patients with cardiac disease. Br J Anaesth. 1979;51(6):551–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Sarkar M, Laussen PC, Zurakowski D, Shukla A, Kussman B, Odegard KC. Hemodynamic responses to etomidate on induction of anesthesia in pediatric patients. Anesth Analg. 2005;101(3):645–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Priebe HJ. Differential effects of isoflurane on regional right and left ventricular performances, and on coronary, systemic, and pulmonary hemodynamics in the dog. Anesthesiology. 1987;66(3):262–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Kerbaul F, Bellezza M, Mekkaoui C, et al. Sevoflurane alters right ventricular performance but not pulmonary vascular resistance in acutely instrumented anesthetized pigs. J Cardiothorac Vasc Anesth. 2006;20(2):209–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Cheng DC, Edelist G. Isoflurane and primary pulmonary hypertension. Anaesthesia. 1988;43(1):22–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Rorie DK, Tyce GM, Sill JC. Increased norepinephrine release from dog pulmonary artery caused by nitrous oxide. Anesth Analg. 1986;65(6):560–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Schulte-Sasse U, Hess W, Tarnow J. Pulmonary vascular responses to nitrous oxide in patients with normal and high pulmonary vascular resistance. Anesthesiology. 1982;57(1):9–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Konstadt SN, Reich DL, Thys DM. Nitrous oxide does not exacerbate pulmonary hypertension or ventricular dysfunction in patients with mitral valvular disease. Can J Anaesth. 1990;37(6):613–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaye AD, Hoover JM, Kaye AJ, et al. Morphine, opioids, and the feline pulmonary vascular bed. Acta Anaesthesiol Scand. 2008;52(7):931–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen TL, Ueng TH, Huang CH, Chen CL, Huang FY, Lin CJ. Improvement of arterial oxygenation by selective infusion of prostaglandin E1 to ventilated lung during one-lung ventilation. Acta Anaesthesiol Scand. 1996;40(1):7–13.PubMedCrossRefGoogle Scholar
  36. 36.
    McCoy EP, Maddineni VR, Elliott P, Mirakhur RK, Carson IW, Cooper RA. Haemodynamic effects of rocuronium during fentanyl anaesthesia: comparison with vecuronium. Can J Anaesth. 1993;40(8):703–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Searle NR, Thomson I, Dupont C, et al. A two-center study evaluating the hemodynamic and pharmacodynamic effects of cisatracurium and vecuronium in patients undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 1999;13(1):20–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Hemmerling TM, Russo G, Bracco D. Neuromuscular blockade in cardiac surgery: an update for clinicians. Ann Card Anaesth. 2008;11(2):80–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Dube L, Granry JC. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: a review. Can J Anaesth. 2003;50(7):732–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Fullerton DA, Hahn AR, Agrafojo J, Sheridan BC, McIntyre Jr RC. Magnesium is essential in mechanisms of pulmonary vasomotor control. J Surg Res. 1996;63(1):93–7.PubMedCrossRefGoogle Scholar
  41. 41.
    al-Halees Z, Afrane B, el-Barbary M. Magnesium sulfate to facilitate weaning of nitric oxide in pulmonary hypertension. Ann Thorac Surg. 1997;63(1):298–9.PubMedGoogle Scholar
  42. 42.
    Haas NA, Kemke J, Schulze-Neick I, Lange PE. Effect of increasing doses of magnesium in experimental pulmonary hypertension after acute pulmonary embolism. Intensive Care Med. 2004;30(11):2102–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Houfflin Debarge V, Sicot B, Jaillard S, et al. The mechanisms of pain-induced pulmonary vasoconstriction: an experimental study in fetal lambs. Anesth Analg. 2007;104(4):799–806.PubMedCrossRefGoogle Scholar
  44. 44.
    Veering BT, Cousins MJ. Cardiovascular and pulmonary effects of epidural anaesthesia. Anaesth Intensive Care. 2000;28(6):620–35.PubMedGoogle Scholar
  45. 45.
    Rex S, Missant C, Segers P, Wouters PF. Thoracic epidural anesthesia impairs the hemodynamic response to acute pulmonary hypertension by deteriorating right ventricular-pulmonary arterial coupling. Crit Care Med. 2007;35(1):222–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Garutti I, Olmedilla L, Cruz P, Pineiro P, De la Gala F, Cirujano A. Comparison of the hemodynamic effects of a single 5 mg/kg dose of lidocaine with or without epinephrine for thoracic paravertebral block. Reg Anesth Pain Med. 2008;33(1):57–63.PubMedGoogle Scholar
  47. 47.
    Armstrong P. Thoracic epidural anaesthesia and primary pulmonary hypertension. Anaesthesia. 1992;47(6):496–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Mallampati SR. Low thoracic epidural anaesthesia for elective cholecystectomy in a patient with congenital heart disease and pulmonary hypertension. Can Anaesth Soc J. 1983;30(1):72–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Kobayashi Y, Amenta F. Neurotransmitter receptors in the pulmonary circulation with particular emphasis on pulmonary endothelium. J Auton Pharmacol. 1994;14(2):137–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Barnes PJ, Liu SF. Regulation of pulmonary vascular tone. Pharmacol Rev. 1995;47(1):87–131.PubMedGoogle Scholar
  51. 51.
    Greenberg B, Rhoden K, Barnes PJ. Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol. 1987;252(2 Pt 2):H434–8.PubMedGoogle Scholar
  52. 52.
    Pearl RG, Maze M, Rosenthal MH. Pulmonary and systemic hemodynamic effects of central venous and left atrial sympathomimetic drug administration in the dog. J Cardiothorac Anesth. 1987;1(1):29–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Roscher R, Ingemansson R, Algotsson L, Sjoberg T, Steen S. Effects of dopamine in lung-transplanted pigs at 32 degrees C. Acta Anaesthesiol Scand. 1999;43(7):715–21.PubMedCrossRefGoogle Scholar
  54. 54.
    Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension. Anaesthesia. 2002;57(1):9–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981;63(1):87–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Jin HK, Yang RH, Chen YF, Thornton RM, Jackson RM, Oparil S. Hemodynamic effects of arginine vasopressin in rats adapted to chronic hypoxia. J Appl Physiol. 1989;66(1):151–60.PubMedGoogle Scholar
  57. 57.
    Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF. Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med. 2002;30(11):2548–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Tayama E, Ueda T, Shojima T, et al. Arginine vasopressin is an ideal drug after cardiac surgery for the management of low systemic vascular resistant hypotension concomitant with pulmonary hypertension. Interact Cardiovasc Thorac Surg. 2007;6(6):715–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Price LC, Forrest P, Sodhi V, et al. Use of vasopressin after Caesarean section in idiopathic pulmonary arterial hypertension. Br J Anaesth. 2007;99(4):552–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Michael JR, Barton RG, Saffle JR, et al. Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS [see comments]. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1372–80.PubMedGoogle Scholar
  61. 61.
    Troncy E, Collet JP, Shapiro S, et al. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1483–8.PubMedGoogle Scholar
  62. 62.
    The Neonatal Inhaled Nitric Oxide Study Group (NINOS). Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics. 1997;99(6):838–45.CrossRefGoogle Scholar
  63. 63.
    Roberts Jr JD, Fineman JR, Morin III FC, et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med. 1997;336(9):605–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Solina AR, Ginsberg SH, Papp D, et al. Dose response to nitric oxide in adult cardiac surgery patients. J Clin Anesth. 2001;13(4):281–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Meyer KC, Love RB, Zimmerman JJ. The therapeutic potential of nitric oxide in lung transplantation. Chest. 1998;113(5):1360–71.PubMedCrossRefGoogle Scholar
  66. 66.
    Paniagua MJ, Crespo-Leiro MG, Rodriguez JA, et al. Usefulness of nitric oxide inhalation for management of right ventricular failure after heart transplantation in patients with pretransplant pulmonary hypertension. Transplant Proc. 1999;31(6):2505–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Ardehali A, Hughes K, Sadeghi A, et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation. 2001;72(4):638–41.PubMedCrossRefGoogle Scholar
  68. 68.
    Mosquera I, Crespo-Leiro MG, Tabuyo T, et al. Pulmonary hypertension and right ventricular failure after heart transplantation: usefulness of nitric oxide. Transplant Proc. 2002;34(1):166–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Mahajan A, Shabanie A, Varshney SM, Marijic J, Sopher MJ. Inhaled nitric oxide in the preoperative evaluation of pulmonary hypertension in heart transplant candidates. J Cardiothorac Vasc Anesth. 2007;21(1):51–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Date H, Triantafillou AN, Trulock EP, Pohl MS, Cooper JD, Patterson GA. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg. 1996;111(5):913–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Yamashita H, Akamine S, Sumida Y, et al. Inhaled nitric oxide attenuates apoptosis in ischemia-reperfusion injury of the rabbit lung. Ann Thorac Surg. 2004;78(1):292–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Meade MO, Granton JT, Matte-Martyn A, et al. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am J Respir Crit Care Med. 2003;167(11):1483–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Wilson WC, Kapelanski DP, Benumof JL, Newhart II JW, Johnson FW, Channick RN. Inhaled nitric oxide (40 ppm) during one-lung ventilation, in the lateral decubitus position, does not decrease pulmonary vascular resistance or improve oxygenation in normal patients. J Cardiothorac Vasc Anesth. 1997;11(2):172–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Ismail-Zade IA, Vuylsteke A, Ghosh S, Latimer RD. Inhaled nitric oxide and one-lung ventilation in the lateral decubitus position. J Cardiothorac Vasc Anesth. 1997;11(7):926–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Rocca GD, Coccia C, Pompei L, et al. Hemodynamic and oxygenation changes of combined therapy with inhaled nitric oxide and inhaled aerosolized prostacyclin. J Cardiothorac Vasc Anesth. 2001;15(2):224–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Moncada S, Higgs EA. Prostaglandins in the pathogenesis and prevention of vascular disease. Blood Rev. 1987;1(2):141–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Vane JR, Botting RM. Pharmacodynamic profile of prostacyclin. Am J Cardiol. 1995;75(3):3A–10.PubMedCrossRefGoogle Scholar
  78. 78.
    McLaughlin VV, Gaine SP, Barst RJ, et al. Efficacy and safety of treprostinil: an epoprostenol analog for primary pulmonary hypertension. J Cardiovasc Pharmacol. 2003;41(2):293–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Voswinckel R, Reichenberger F, Enke B, et al. Acute effects of the combination of sildenafil and inhaled treprostinil on haemodynamics and gas exchange in pulmonary hypertension. Pulm Pharmacol Ther. 2008;21(5):824–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Hoeper MM, Schwarze M, Ehlerding S, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost a prostacyclin analogue. N Engl J Med. 2000;342(25):1866–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Olschewski H, Simonneau G, Galie N, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002;347(5):322–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Fiser SM, Cope JT, Kron IL, et al. Aerosolized prostacyclin (epoprostenol) as an alternative to inhaled nitric oxide for patients with reperfusion injury after lung transplantation. J Thorac Cardiovasc Surg. 2001;121(5):981–2.PubMedCrossRefGoogle Scholar
  83. 83.
    Langer F, Wendler O, Wilhelm W, Tscholl D, Schafers HJ. Treatment of a case of acute right heart failure by inhalation of iloprost, a long-acting prostacyclin analogue. Eur J Anaesthesiol. 2001;18(11):770–3.PubMedGoogle Scholar
  84. 84.
    Langer F, Wilhelm W, Lausberg H, Schafers HJ. Iloprost and selective pulmonary vasodilation. Clinical results of intraoperative and postoperative inhalation of iloprost. Anaesthesist. 2004;53(8):753–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Sablotzki A, Hentschel T, Gruenig E, et al. Hemodynamic effects of inhaled aerosolized iloprost and inhaled nitric oxide in heart transplant candidates with elevated pulmonary vascular resistance. Eur J Cardiothorac Surg. 2002;22(5):746–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Wensel R, Opitz C, Ewert R, Bruch L, Kleber F. Effects of iloprost inhalation on exercise capacity and ventilatory efficiency in patients with primary pulmonary hypertension. Circulation. 2000;101(20):2388–92.PubMedGoogle Scholar
  87. 87.
    Wittwer T, Franke UF, Fehrenbach A, et al. Donor pretreatment using the aerosolized prostacyclin analogue iloprost optimizes post-ischemic function of non-heart beating donor lungs. J Heart Lung Transplant. 2005;24(4):371–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Rex S, Schaelte G, Metzelder S, et al. Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: a prospective, randomized-controlled trial. Acta Anaesthesiol Scand. 2008;52(1):65–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Khan TA, Schnickel G, Ross D, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg. 2009;138(6):1417–24.PubMedCrossRefGoogle Scholar
  90. 90.
    Bund M, Henzler D, Walz R, Rossaint R, Piepenbrock S. Cardiopulmonary effects of intravenous prostaglandin E1 during experimental one-lung ventilation. Thorac Cardiovasc Surg. 2006;54(5):341–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Bund M, Henzler D, Walz R, Rossaint R, Piepenbrock S, Kuhlen R. Aerosolized and intravenous prostacyclin during one-lung ventilation. Hemodynamic and pulmonary effects. Anaesthesist. 2004;53(7):612–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Nielsen VG. Nitric oxide decreases coagulation protein function in rabbits as assessed by thromboelastography. Anesth Analg. 2001;92(2):320–3.PubMedCrossRefGoogle Scholar
  93. 93.
    Haraldsson A, Kieler-Jensen N, Wadenvik H, Ricksten SE. Inhaled prostacyclin and platelet function after cardiac surgery and cardiopulmonary bypass. Intensive Care Med. 2000;26(2):188–94.PubMedCrossRefGoogle Scholar
  94. 94.
    Hill LL, De Wet CJ, Jacobsohn E, Leighton BL, Tymkew H. Peripartum substitution of inhaled for intravenous prostacyclin in  a patient with primary pulmonary hypertension. Anesthesiology. 2004;100(6):1603–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Buckley MS, Feldman JP. Nebulized milrinone use in a pulmonary hypertensive crisis. Pharmacotherapy. 2007;27(12):1763–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Lamarche Y, Perrault LP, Maltais S, Tetreault K, Lambert J, Denault AY. Preliminary experience with inhaled milrinone in cardiac surgery. Eur J Cardiothorac Surg. 2007;31(6):1081–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Urdaneta F, Lobato EB, Beaver T, et al. Treating pulmonary hypertension post cardiopulmonary bypass in pigs: milrinone vs. sildenafil analog. Perfusion. 2008;23(2):117–25.PubMedCrossRefGoogle Scholar
  98. 98.
    Haraldsson SA, Kieler-Jensen N, Ricksten SE. The additive pulmonary vasodilatory effects of inhaled prostacyclin and inhaled milrinone in postcardiac surgical patients with pulmonary hypertension. Anesth Analg. 2001;93(6):1439–45.CrossRefGoogle Scholar
  99. 99.
    Lakshminrusimha S, Porta NF, Farrow KN, et al. Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med. 2009;10(1):106–12.PubMedCrossRefGoogle Scholar
  100. 100.
    Ghofrani HA, Voswinckel R, Reichenberger F, et al. Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J Am Coll Cardiol. 2004;44(7):1488–96.PubMedGoogle Scholar
  101. 101.
    Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K, Archer S. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation. 2002;105(20):2398–403.PubMedCrossRefGoogle Scholar
  102. 102.
    Wharton J, Strange JW, Moller GM, et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med. 2005;172(1):105–13.PubMedCrossRefGoogle Scholar
  103. 103.
    Archer SL, Michelakis ED. Phosphodiesterase type 5 inhibitors for pulmonary arterial hypertension. N Engl J Med. 2009;361(19):1864–71.PubMedCrossRefGoogle Scholar
  104. 104.
    Galie N, Brundage BH, Ghofrani HA, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119(22):2894–903.PubMedCrossRefGoogle Scholar
  105. 105.
    Galie N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–57.PubMedCrossRefGoogle Scholar
  106. 106.
    Atz AM, Wessel DL. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology. 1999;91(1):307–10.PubMedCrossRefGoogle Scholar
  107. 107.
    Bigatello LM, Hess D, Dennehy KC, Medoff BD, Hurford WE. Sildenafil can increase the response to inhaled nitric oxide. Anesthesiology. 2000;92(6):1827–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Suntharalingam J, Treacy CM, Doughty NJ, et al. Long-term use of sildenafil in inoperable chronic thromboembolic pulmonary hypertension. Chest. 2008;134(2):229–36.PubMedCrossRefGoogle Scholar
  109. 109.
    Boffini M, Sansone F, Ceresa F, et al. Role of oral sildenafil in the treatment of right ventricular dysfunction after heart transplantation. Transplant Proc. 2009;41(4):1353–6.PubMedCrossRefGoogle Scholar
  110. 110.
    De Santo LS, Mastroianni C, Romano G, et al. Role of sildenafil in acute posttransplant right ventricular dysfunction: successful experience in 13 consecutive patients. Transplant Proc. 2008;40(6):2015–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Ghofrani HA, Schermuly RT, Rose F, et al. Sildenafil for long-term treatment of nonoperable chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2003;167(8):1139–41.PubMedCrossRefGoogle Scholar
  112. 112.
    Dias-Junior CA, Vieira TF, Moreno Jr H, Evora PR, Tanus-Santos JE. Sildenafil selectively inhibits acute pulmonary embolism-induced pulmonary hypertension. Pulm Pharmacol Ther. 2005;18(3):181–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Lewis GD, Shah R, Shahzad K, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116(14):1555–62.PubMedCrossRefGoogle Scholar
  114. 114.
    Shim JK, Choi YS, Oh YJ, Kim DH, Hong YW, Kwak YL. Effect of oral sildenafil citrate on intraoperative hemodynamics in patients with pulmonary hypertension undergoing valvular heart surgery. J Thorac Cardiovasc Surg. 2006;132(6):1420–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Zakliczynski M, Maruszewski M, Pyka L, et al. Effectiveness and safety of treatment with sildenafil for secondary pulmonary hypertension in heart transplant candidates. Transplant Proc. 2007;39(9):2856–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Califf RM, Adams KF, McKenna WJ, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Cara Reimer
    • 1
  • John Granton
    • 2
  1. 1.Department of Anesthesiology and Perioperative MedicineKingston General HospitalKingstonCanada
  2. 2.Division of Respirology, Department of MedicineUniversity of Toronto and University Health Network, Mount Sinai Hospital, Women’s College HospitalTorontoCanada

Personalised recommendations