Pharmacology of the Airways

  • Paul J. Wojciechowski
  • William E. Hurford


Short-acting beta-2 adrenergic agonists are administered for the acute relief of bronchospasm, wheezing, and airflow obstruction. Long-acting beta-2 adrenergic agonists are for long-term control of symptoms. Inhaled anticholinergics are first-line therapy in COPD. They are useful for both maintenance therapy and in acute exacerbations. Inhaled corticosteroids are used to control inflammation in asthma and COPD. In asthma, they can be used as monotherapy. In COPD, they are used in conjunction with long-acting beta-adrenergic agonists. Systemic corticosteroids are used for the reduction of inflammation in asthma and COPD exacerbations and are not typically prescribed as maintenance therapy. Leukotriene modifiers, mast cell stabilizers, and methylxanthines are alternative therapies used in asthma when symptoms are not well-controlled on first-line therapy. Volatile and intravenous anesthetics provide a degree of bronchodilation that may be useful in treating intraoperative bronchoconstriction. Helium/oxygen mixtures, antihistamines, and magnesium sulfate are alternative therapies used when bronchospasm does not respond to conventional therapies.


Chronic Obstructive Pulmonary Disease Airway Smooth Muscle Magnesium Sulfate Asthma Exacerbation Obstructive Lung Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jordan D. Central nervous pathways and control of the airways. Respir Physiol. 2001;125(1–2):67–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Lewis MJ, Short AL, Lewis KE. Autonomic nervous system control of the cardiovascular and respiratory systems in asthma. Respir Med. 2006;100(10):1688–705.PubMedCrossRefGoogle Scholar
  3. 3.
    Burwell DR, Jones JG. The airways and anaesthesia – I. Anatomy, physiology and fluid mechanics. Anaesthesia. 1996;51(9):849–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Canning BJ, Fischer A. Neural regulation of airway smooth muscle tone. Respir Physiol. 2001;125(1–2):113–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Barnes Peter J. Pharmacology of airway smooth muscle. Am J Respir Crit Care Med. 1998;158(5):S123–32.Google Scholar
  6. 6.
    Lumb AB, Nunn JF. Nunn’s applied respiratory physiology. 6th ed. Edinburgh: Elsevier Butterworth Heinemann; 2005.Google Scholar
  7. 7.
    Johnson M. The beta-adrenoceptor. Am J Respir Crit Care Med. 1998;158(5 Pt 3):S146–53.PubMedGoogle Scholar
  8. 8.
    Widdicombe JG. Autonomic regulation. i-NANC/e-NANC. Am J Respir Crit Care Med. 1998;158((5 Pt 3)):S171–5.PubMedGoogle Scholar
  9. 9.
    Drazen JM, Gaston B, Shore SA. Chemical regulation of pulmonary airway tone. Annu Rev Physiol. 1995;57:151–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Fanta CH. Asthma. N Engl J Med. 2009;360(10):1002–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Nelson HS. Beta-adrenergic bronchodilators. N Engl J Med. 1995;333(8):499–506.PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson M, Butchers PR, Coleman RA, et al. The pharmacology of salmeterol. Life Sci. 1993;52(26):2131–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Drazen JM, Israel E, Boushey HA, et al. Comparison of regularly scheduled with as-needed use of albuterol in mild asthma. Asthma Clinical Research Network. N Engl J Med. 1996;335(12):841–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Israel E, Chinchilli VM, Ford JG, et al. Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet. 2004;364(9444):1505–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Israel E, Drazen JM, Liggett SB, et al. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med. 2000;162(1):75–80.PubMedGoogle Scholar
  16. 16.
    Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma – Summary Report 2007. 2009. Accessed 29 Dec 2009.
  17. 17.
    Gibson PG, Powell H, Ducharme FM. Differential effects of maintenance long-acting beta-agonist and inhaled corticosteroid on asthma control and asthma exacerbations. J Allergy Clin Immunol. 2007;119(2):344–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Bengtsson B. Plasma concentration and side-effects of terbutaline. Eur J Respir Dis Suppl. 1984;134:231–5.PubMedGoogle Scholar
  19. 19.
    Teule GJ, Majid PA. Haemodynamic effects of terbutaline in chronic obstructive airways disease. Thorax. 1980;35(7):536–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Wagner PD, Dantzker DR, Iacovoni VE, Tomlin WC, West JB. Ventilation-perfusion inequality in asymptomatic asthma. Am Rev Respir Dis. 1978;118(3):511–24.PubMedGoogle Scholar
  21. 21.
    Repsher LH, Anderson JA, Bush RK, et al. Assessment of tachyphylaxis following prolonged therapy of asthma with inhaled albuterol aerosol. Chest. 1984;85(1):34–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Georgopoulos D, Wong D, Anthonisen NR. Tolerance to beta 2-agonists in patients with chronic obstructive pulmonary disease. Chest. 1990;97(2):280–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM. The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006;129(1):15–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Williams SJ, Winner SJ, Clark TJ. Comparison of inhaled and intravenous terbutaline in acute severe asthma. Thorax. 1981;36(8):629–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Pierce RJ, Payne CR, Williams SJ, Denison DM, Clark TJ. Comparison of intravenous and inhaled terbutaline in the treatment of asthma. Chest. 1981;79(5):506–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Spiteri MA, Millar AB, Pavia D, Clarke SW. Subcutaneous adrenaline versus terbutaline in the treatment of acute severe asthma. Thorax. 1988;43(1):19–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Flynn RA, Glynn DA, Kennedy MP. Anticholinergic treatment in airways diseases. Adv Ther. 2009;26(10):908–19.PubMedCrossRefGoogle Scholar
  28. 28.
    Karpel JP, Schacter EN, Fanta C, et al. A comparison of ipratropium and albuterol vs albuterol alone for the treatment of acute asthma. Chest. 1996;110(3):611–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Restrepo RD. A stepwise approach to management of stable COPD with inhaled pharmacotherapy: a review. Respir Care. 2009;54(8):1058–81.PubMedGoogle Scholar
  30. 30.
    Tashkin DP, Celli B, Senn S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359(15):1543–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Gal TJ, Suratt PM. Atropine and glycopyrrolate effects on lung mechanics in normal man. Anesth Analg. 1981;60(2):85–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Gal TJ, Suratt PM, Lu JY. Glycopyrrolate and atropine inhalation: comparative effects on normal airway function. Am Rev Respir Dis. 1984;129(5):871–3.PubMedGoogle Scholar
  33. 33.
    Villetti G, Bergamaschi M, Bassani F, et al. Pharmacological assessment of the duration of action of glycopyrrolate vs tiotropium and ipratropium in guinea-pig and human airways. Br J Pharmacol. 2006;148(3):291–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Haddad EB, Patel H, Keeling JE, Yacoub MH, Barnes PJ, Belvisi MG. Pharmacological characterization of the muscarinic receptor antagonist, glycopyrrolate, in human and guinea-pig airways. Br J Pharmacol. 1999;127(2):413–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Tzelepis G, Komanapolli S, Tyler D, Vega D, Fulambarker A. Comparison of nebulized glycopyrrolate and metaproterenol in chronic obstructive pulmonary disease. Eur Respir J. 1996;9(1):100–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Sutherland ER, Martin RJ. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. J Allergy Clin Immunol. 2003;112(5):819–27; quiz 828.Google Scholar
  37. 37.
    Fujimoto K, Kubo K, Yamamoto H, Yamaguchi S, Matsuzawa Y. Eosinophilic inflammation in the airway is related to glucocorticoid reversibility in patients with pulmonary emphysema. Chest. 1999;115(3):697–702.PubMedCrossRefGoogle Scholar
  38. 38.
    Pizzichini E, Pizzichini MM, Gibson P, et al. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am J Respir Crit Care Med. 1998;158(5 Pt 1):1511–7.PubMedGoogle Scholar
  39. 39.
    Chanez P, Bourdin A, Vachier I, Godard P, Bousquet J, Vignola AM. Effects of inhaled corticosteroids on pathology in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004;1(3):184–90.PubMedCrossRefGoogle Scholar
  40. 40.
    Suissa S, Ernst P, Benayoun S, Baltzan M, Cai B. Low-dose inhaled corticosteroids and the prevention of death from asthma. N Engl J Med. 2000;343(5):332–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Donahue JG, Weiss ST, Livingston JM, Goetsch MA, Greineder DK, Platt R. Inhaled steroids and the risk of hospitalization for asthma. JAMA. 1997;277(11):887–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Calverley PM, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356(8):775–89.PubMedCrossRefGoogle Scholar
  43. 43.
    Barnes PJ. Molecular mechanisms of corticosteroids in allergic diseases. Allergy. 2001;56(10):928–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Pujols L, Mullol J, Torrego A, Picado C. Glucocorticoid receptors in human airways. Allergy. 2004;59(10):1042–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Singh S, Amin AV, Loke YK. Long-term use of inhaled corticosteroids and the risk of pneumonia in chronic obstructive pulmonary disease: a meta-analysis. Arch Intern Med. 2009;169(3):219–29.PubMedCrossRefGoogle Scholar
  46. 46.
    Niewoehner DE, Erbland ML, Deupree RH, et al. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. Department of Veterans Affairs Cooperative Study Group. N Engl J Med. 1999;340(25):1941–7.PubMedCrossRefGoogle Scholar
  47. 47.
    McEvoy CE, Niewoehner DE. Adverse effects of corticosteroid therapy for COPD. A critical review. Chest. 1997;111(3):732–43.PubMedCrossRefGoogle Scholar
  48. 48.
    Usery JB, Self TH, Muthiah MP, Finch CK. Potential role of leukotriene modifiers in the treatment of chronic obstructive pulmonary disease. Pharmacotherapy. 2008;28(9):1183–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Drazen JM, Israel E, O’Byrne PM. Drug therapy: treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med. 1999;340(3):197–206.PubMedCrossRefGoogle Scholar
  50. 50.
    Reiss TF, Chervinsky P, Dockhorn RJ, Shingo S, Seidenberg B, Edwards TB. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med. 1998;158(11):1213–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Israel E, Rubin P, Kemp JP, et al. The effect of inhibition of 5-lipoxygenase by zileuton in mild-to-moderate asthma. Ann Intern Med. 1993;119(11):1059–66.PubMedGoogle Scholar
  52. 52.
    Brabson JH, Clifford D, Kerwin E, et al. Efficacy and safety of low-dose fluticasone propionate compared with zafirlukast in patients with persistent asthma. Am J Med. 2002;113(1):15–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Malmstrom K, Rodriguez-Gomez G, Guerra J, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med. 1999;130(6):487–95.PubMedGoogle Scholar
  54. 54.
    Price DB, Hernandez D, Magyar P, et al. Randomised controlled trial of montelukast plus inhaled budesonide versus double dose inhaled budesonide in adult patients with asthma. Thorax. 2003;58(3):211–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Bernstein IL. Cromolyn sodium. Chest. 1985;87(1 Suppl):68S–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Guevara JP, Ducharme FM, Keren R, Nihtianova S, Zorc J. Inhaled corticosteroids versus sodium cromoglycate in children and adults with asthma. Cochrane Database Syst Rev. 2006;(2):CD003558.Google Scholar
  57. 57.
    Barnes PJ. Theophylline: new perspectives for an old drug. Am J Respir Crit Care Med. 2003;167(6):813–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Global Intiative for Asthma. 2009. Accessed 5 Jan 2010.
  59. 59.
    Global Initiative for Chronic Obstructive Lung Disease. 2009. Accessed 7 Jan 2010.
  60. 60.
    Aubier M, De Troyer A, Sampson M, Macklem PT, Roussos C. Aminophylline improves diaphragmatic contractility. N Engl J Med. 1981;305(5):249–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Goff MJ, Arain SR, Ficke DJ, Uhrich TD, Ebert TJ. Absence of bronchodilation during desflurane anesthesia: a comparison to sevoflurane and thiopental. Anesthesiology. 2000;93(2):404–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Rooke GA, Choi JH, Bishop MJ. The effect of isoflurane, halothane, sevoflurane, and thiopental/nitrous oxide on respiratory system resistance after tracheal intubation. Anesthesiology. 1997;86(6):1294–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Yamakage M. Direct inhibitory mechanisms of halothane on canine tracheal smooth muscle contraction. Anesthesiology. 1992;77(3):546–53.PubMedCrossRefGoogle Scholar
  64. 64.
    Yamakage M, Chen X, Tsujiguchi N, Kamada Y, Namiki A. Different inhibitory effects of volatile anesthetics on T- and L-type voltage-dependent Ca2+ channels in porcine tracheal and bronchial smooth muscles. Anesthesiology. 2001;94(4):683–93.PubMedCrossRefGoogle Scholar
  65. 65.
    Gold MI, Helrich M. Pulmonary mechanics during general anesthesia: V. Status asthmaticus. Anesthesiology. 1970;32(5):422–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Parnass SM, Feld JM, Chamberlin WH, Segil LJ. Status asthmaticus treated with isoflurane and enflurane. Anesth Analg. 1987;66(2):193–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Johnston RG, Noseworthy TW, Friesen EG, Yule HA, Shustack A. Isoflurane therapy for status asthmaticus in children and adults. Chest. 1990;97(3):698–701.PubMedCrossRefGoogle Scholar
  68. 68.
    Schwartz SH. Treatment of status asthmaticus with halothane. JAMA. 1984;251(20):2688–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Cheng EY, Mazzeo AJ, Bosnjak ZJ, Coon RL, Kampine JP. Direct relaxant effects of intravenous anesthetics on airway smooth muscle. Anesth Analg. 1996;83(1):162–8.PubMedGoogle Scholar
  70. 70.
    Eames WO, Rooke GA, Wu RS, Bishop MJ. Comparison of the effects of etomidate, propofol, and thiopental on respiratory resistance after tracheal intubation. Anesthesiology. 1996;84(6):1307–11.PubMedCrossRefGoogle Scholar
  71. 71.
    Wanna HT, Gergis SD. Procaine, lidocaine, and ketamine inhibit histamine-induced contracture of guinea pig tracheal muscle in vitro. Anesth Analg. 1978;57(1):25–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Lin CC, Shyr MH, Tan PP, et al. Mechanisms underlying the inhibitory effect of propofol on the contraction of canine airway smooth muscle. Anesthesiology. 1999;91(3):750–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Brown RH, Wagner EM. Mechanisms of bronchoprotection by anesthetic induction agents: propofol versus ketamine. Anesthesiology. 1999;90(3):822–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Brown RH, Greenberg RS, Wagner EM. Efficacy of propofol to prevent bronchoconstriction: effects of preservative. Anesthesiology. 2001;94(5):851–5; discussion 856A.Google Scholar
  75. 75.
    Yukioka H, Hayashi M, Terai T, Fujimori M. Intravenous lidocaine as a suppressant of coughing during tracheal intubation in elderly patients. Anesth Analg. 1993;77(2):309–12.PubMedGoogle Scholar
  76. 76.
    Hamill JF, Bedford RF, Weaver DC, Colohan AR. Lidocaine before endotracheal intubation: intravenous or laryngotracheal? Anesthesiology. 1981;55(5):578–81.PubMedCrossRefGoogle Scholar
  77. 77.
    Maggiore SM, Richard JC, Abroug F, et al. A multicenter, randomized trial of noninvasive ventilation with helium-oxygen mixture in exacerbations of chronic obstructive lung disease. Crit Care Med. 2010;38(1):145–51.PubMedCrossRefGoogle Scholar
  78. 78.
    Lordan JL, Holgate ST. H1-antihistamines in asthma. Clin Allergy Immunol. 2002;17:221–48.PubMedGoogle Scholar
  79. 79.
    Richter K, Gronke L, Janicki S, Maus J, Jorres RA, Magnussen H. Effect of azelastine, montelukast, and their combination on allergen-induced bronchoconstriction in asthma. Pulm Pharmacol Ther. 2008;21(1):61–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Rowe BH, Bretzlaff JA, Bourdon C, Bota GW, Camargo CA Jr. Magnesium sulfate for treating exacerbations of acute asthma in the emergency department. Cochrane Database Syst Rev. 2000;(2):CD001490.Google Scholar
  81. 81.
    Blitz M, Blitz S, Hughes R, et al. Aerosolized magnesium sulfate for acute asthma: a systematic review. Chest. 2005;128(1):337–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Paul J. Wojciechowski
    • 1
  • William E. Hurford
    • 1
  1. 1.Department of AnesthesiologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations