Nonrespiratory Functions of the Lung

  • Lauren Yeazell
  • Keith Littlewood


Pulmonary endothelial cells metabolize endogenous ­substances and xenobiotics via ecto-enzymes on their luminal surface and caveolae or enzyme systems within their cytosol. Pulmonary metabolism results in the activation of several endogenous substances and some medications of importance to the anesthesiologist. Pulmonary uptake is often not associated with metabolism, but still markedly affects pharmacokinetics by initially attenuating peak concentrations and then returning unchanged substance to the circulation. The lung’s ability to serve as a vascular reservoir is directly related to the capacitance of the pulmonary vessels. The lung serves as a physical filter but this function may be compromised with high cardiac output and in several disease states. The respiratory epithelium’s functions include humidification and trapping of particles and pathogens. The airway surface film has antimicrobial capacity beyond its mechanical removal of debris from the airway.


Cystic Fibrosis Transmembrane Conductance Regulator Goblet Cell Atrial Natriuretic Peptide Respiratory Epithelium Hepatopulmonary Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Major R. A history of medicine. Springfield: Thomas; 1954.Google Scholar
  2. 2.
    Lumb AB. The history of respiratory physiology. In: Lumb AB, editor. Nunn’s applied respiratory physiology. 6th ed. Oxford: Buttterworth-Heinemann; 2005.Google Scholar
  3. 3.
    Shoja MM, Tubbs RS. The history of anatomy in Persia. J Anat. 2007;210(4):359–78.PubMedGoogle Scholar
  4. 4.
    Simionescu M. Lung endothelium: structure-function correlates. In: Crystal RG, editor. Lung: scientific foundations. New York: Raven Press; 1991. p. 301–21.Google Scholar
  5. 5.
    Klein IK, Predescu DN, Sharma T, Knezevic I, Malik AB, Predescu S. Intersectin-2L regulates caveola endocytosis secondary to Cdc42-mediated actin polymerization. J Biol Chem. 2009;284(38):25953–61.PubMedGoogle Scholar
  6. 6.
    Parat M, Kwang WJ. The biology of caveolae: achievements and perspectives. International review of cell and molecular biology. Vol. 273. Academic; 2009. p. 117–62.Google Scholar
  7. 7.
    Ryan US, Ryan JW. Relevance of endothelial surface structure to the activity of vasoactive substances. Chest. 1985;88(4 Suppl):203S–7.PubMedGoogle Scholar
  8. 8.
    Ryan JW, Smith U. Metabolism of adenosine 5′-monophosphate during circulation through the lungs. Trans Assoc Am Physicians. 1971;84:297–306.PubMedGoogle Scholar
  9. 9.
    Vane JR. The release and fate of vaso-active hormones in the circulation. Br J Pharmacol. 1969;35(2):209–42.PubMedGoogle Scholar
  10. 10.
    Dawidowicz ALP, Fornal EPD, Mardarowicz MPD, Fijalkowska APD. The role of human lungs in the biotransformation of propofol. Anesthesiology. 2000;93(4):992–7.PubMedGoogle Scholar
  11. 11.
    Hiraoka H, Yamamoto K, Miyoshi S, et al. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol. 2005;60(2):176–82.PubMedGoogle Scholar
  12. 12.
    de Graaf IAM, Koster HJ. Cryopreservation of precision-cut tissue slices for application in drug metabolism research. Toxicology In Vitro. 2003;17(1):1–17.PubMedGoogle Scholar
  13. 13.
    Klem C, Dasta JF, Reilley TE, Flancbaum LJ. Pulmonary extraction of dobutamine in critically ill surgical patients. Anesth Analg. 1995;81(2):287–91.PubMedGoogle Scholar
  14. 14.
    Hayashi Y, Sumikawa K, Yamatodani A, Kamibayashi T, Mammoto T, Kuro M. Quantitative analysis of pulmonary clearance of exogenous dopamine after cardiopulmonary bypass in humans. Anesth Analg. 1993;76(1):107–12.PubMedGoogle Scholar
  15. 15.
    Matot I, Pizov R. Pulmonary extraction and accumulation of lipid formulations of amphotericin B. Crit Care Med. 2000;28(7):2528–32.PubMedGoogle Scholar
  16. 16.
    Upton RN, Doolette DJ. Kinetic aspects of drug disposition in the lungs. Clin Exp Pharmacol Physiol. 1999;26(5–6):381–91.PubMedGoogle Scholar
  17. 17.
    Serabjit-Singh CJ, Nishio SJ, Philpot RM, Plopper CG. The distribution of cytochrome P-450 monooxygenase in cells of the rabbit lung: an ultrastructural immunocytochemical characterization. Mol Pharmacol. 1988;33(3):279–89.PubMedGoogle Scholar
  18. 18.
    Pacifici GM, Franchi M, Bencini C, Repetti F, Di Lascio N, Muraro GB. Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica. 1988;18(7):849–56.PubMedGoogle Scholar
  19. 19.
    Litterst CL, Mimnaugh EG, Reagan RL, Gram TE. Comparison of in vitro drug metabolism by lung, liver, and kidney of several common laboratory species. Drug Metab Dispos. 1975;3(4):259–65.PubMedGoogle Scholar
  20. 20.
    Taeger K, Weninger E, Schmelzer F, Adt M, Franke N, Peter K. Pulmonary kinetics of fentanyl and alfentanil in surgical patients. Br J Anaesth. 1988;61(4):425–34.PubMedGoogle Scholar
  21. 21.
    Waters CM, Krejcie TC, Avram MJ. Facilitated uptake of fentanyl, but not alfentanil, by human pulmonary endothelial cells. Anesthesiology. 2000;93(3):825–31.PubMedGoogle Scholar
  22. 22.
    Boer F, Bovill JG, Burm AG, Mooren RA. Uptake of sufentanil, alfentanil and morphine in the lungs of patients about to undergo coronary artery surgery. Br J Anaesth. 1992;68(4):370–5.PubMedGoogle Scholar
  23. 23.
    Boer F, Olofsen E, Bovill JG, et al. Pulmonary uptake of sufentanil during and after constant rate infusion. Br J Anaesth. 1996;76(2):203–8.PubMedGoogle Scholar
  24. 24.
    Davis ME, Mehendale HM. Absence of metabolism of morphine during accumulation by isolated perfused rabbit lung. Drug Metab Dispos. 1979;7(6):425–8.PubMedGoogle Scholar
  25. 25.
    Roerig DL, Kotrly KJ, Vucins EJ, Ahlf SB, Dawson CA, ­Kampine JP. First pass uptake of fentanyl, meperidine, and morphine in the human lung. Anesthesiology. 1987;67(4):466–72.PubMedGoogle Scholar
  26. 26.
    Persson MP, Wiklund L, Hartvig P, Paalzow L. Potential pulmonary uptake and clearance of morphine in postoperative patients. Eur J Clin Pharmacol. 1986;30(5):567–74.PubMedGoogle Scholar
  27. 27.
    Beaufort TM, Proost JH, Houwertjes MC, Roggeveld J, Wierda JM. The pulmonary first-pass uptake of five nondepolarizing muscle relaxants in the pig. Anesthesiology. 1999;90(2):477–83.PubMedGoogle Scholar
  28. 28.
    Bertler A, Lewis DH, Lofstrom JB, Post C. In vivo lung uptake of lidocaine in pigs. Acta Anaesthesiol Scand. 1978;22(5):530–6.PubMedGoogle Scholar
  29. 29.
    Post C, Eriksdotter-Behm K. Dependence of lung uptake of lidocaine in vivo on blood pH. Acta Pharmacol Toxicol (Copenh). 1982;51(2):136–40.Google Scholar
  30. 30.
    Krejcie TC, Avram MJ, Gentry WB, Niemann CU, Janowski MP, Henthorn TK. A recirculatory model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis of arterial and mixed venous data from dogs. J Pharmacokinet Biopharm. 1997;25(2):169–90.PubMedGoogle Scholar
  31. 31.
    Hasegawa K, Yukioka H, Hayashi M, Tatekawa S, Fujimori M. Lung uptake of lidocaine during hyperoxia and hypoxia in the dog. Acta Anaesthesiol Scand. 1996;40(4):489–95.PubMedGoogle Scholar
  32. 32.
    Sjostrand U, Widman B. Distribution of bupivacaine in the rabbit under normal and acidotic conditions. Acta Anaesthesiol Scand Suppl. 1973;50:1–24.PubMedGoogle Scholar
  33. 33.
    Irestedt L, Andreen M, Belfrage P, Fagerstrom T. The elimination of bupivacaine (Marcain) after short intravenous infusion in the dog: with special reference to the role played by the liver and lungs. Acta Anaesthesiol Scand. 1978;22(4):413–22.PubMedGoogle Scholar
  34. 34.
    Rothstein P, Cole JS, Pitt BR. Pulmonary extraction of [3H]bupivacaine: modification by dose, propranolol and interaction with [14C]5-hydroxytryptamine. J Pharmacol Exp Ther. 1987;240(2):410–4.PubMedGoogle Scholar
  35. 35.
    Kietzmann D, Foth H, Geng WP, Rathgeber J, GundertRemy U, Kettler D. Transpulmonary disposition of prilocaine, mepivacaine, and bupivacaine in humans in the course of epidural anaesthesia. Acta Anaesthesiol Scand. 1995;39(7):885–90.PubMedGoogle Scholar
  36. 36.
    Sharrock NE, Mather LE, Go G, Sculco TP. Arterial and pulmonary arterial concentrations of the enantiomers of bupivacaine after epidural injection in elderly patients. Anesth Analg. 1998;86(4):812–7.PubMedGoogle Scholar
  37. 37.
    Palazzo MG, Kalso EA, Argiras E, Madgwick R, Sear JW. First pass lung uptake of bupivacaine: effect of acidosis in an intact rabbit lung model. Br J Anaesth. 1991;67(6):759–63.PubMedGoogle Scholar
  38. 38.
    Chang DH, Ladd LA, Wilson KA, Gelgor L, Mather LE. Tolerability of large-dose intravenous levobupivacaine in sheep. Anesth Analg. 2000;91(3):671–9.PubMedGoogle Scholar
  39. 39.
    Ohmura S, Kawada M, Ohta T, Yamamoto K, Kobayashi T. Systemic toxicity and resuscitation in bupivacaine-, ­levobupivacaine-, or ropivacaine-infused rats.[see comment]. Anesth Analg. 2001;93(3):743–8.PubMedGoogle Scholar
  40. 40.
    Ohmura S, Sugano A, Kawada M, Yamamoto K. Pulmonary uptake of ropivacaine and levobupivacaine in rabbits. Anesth Analg. 2003;97(3):893–7.PubMedGoogle Scholar
  41. 41.
    Mather LE, Copeland SE, Ladd LA. Acute toxicity of local anesthetics: underlying pharmacokinetic and pharmacodynamic concepts [see comment]. Reg Anesth Pain Med. 2005;30(6):553–66.PubMedGoogle Scholar
  42. 42.
    Heavner JE. Let’s abandon blanket maximum recommended doses of local anesthetics [comment]. Reg Anesth Pain Med. 2004;29(6):524.PubMedGoogle Scholar
  43. 43.
    Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept [see comment]. Reg Anesth Pain Med. 2004;29(6):564–75; discussion 524.Google Scholar
  44. 44.
    Reynolds F. Maximum recommended doses of local anesthetics: a constant cause of confusion [comment]. Reg Anesth Pain Med. 2005;30(3):314–6.PubMedGoogle Scholar
  45. 45.
    Groban L. Central nervous system and cardiac effects from long-acting amide local anesthetic toxicity in the intact animal model. Reg Anesth Pain Med. 2003;28(1):3–11.PubMedGoogle Scholar
  46. 46.
    Mulroy MF. Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures. Reg Anesth Pain Med. 2002;27(6):556–61.PubMedGoogle Scholar
  47. 47.
    Rosenblatt MA, Abel M, Fischer GW, Itzkovich CJ, ­Eisenkraft JB. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest [see comment]. Anesthesiology. 2006;105(1):217–8.PubMedGoogle Scholar
  48. 48.
    Felice K, Schumann H. Intravenous lipid emulsion for local anesthetic toxicity: a review of the literature. J Med Toxicol. 2008;4(3):184–91.PubMedGoogle Scholar
  49. 49.
    Marwick PC, Levin AI, Coetzee AR. Recurrence of ­cardiotoxicity after lipid rescue from bupivacaine-induced cardiac arrest [see comment]. Anesth Analg. 2009;108(4):1344–6.PubMedGoogle Scholar
  50. 50.
    Roerig DL, Kotrly KJ, Dawson CA, Ahlf SB, Gualtieri JF, ­Kampine JP. First-pass uptake of verapamil, diazepam, and thiopental in the human lung. Anesth Analg. 1989;69(4):461–6.PubMedGoogle Scholar
  51. 51.
    Pedraz JL, Lanao JM, Hernandez JM, Dominguez-Gil A. The biotransformation kinetics of ketamine “in vitro” in rabbit liver and lung microsome fractions. Eur J Drug Metab Pharmacokinet. 1986;11(1):9–16.PubMedGoogle Scholar
  52. 52.
    Henthorn TK, Krejcie TC, Niemann CU, Enders-Klein C, Shanks CA, Avram MJ. Ketamine distribution described by a recirculatory pharmacokinetic model is not stereoselective. Anesthesiology. 1999;91(6):1733–43.PubMedGoogle Scholar
  53. 53.
    Mather LE, Selby DG, Runciman WB, McLean CF. Propofol: assay and regional mass balance in the sheep. Xenobiotica. 1989;19(11):1337–47.PubMedGoogle Scholar
  54. 54.
    Kuipers JA, Boer F, Olieman W, Burm AG, Bovill JG. First-pass lung uptake and pulmonary clearance of propofol: assessment with a recirculatory indocyanine green pharmacokinetic model. Anesthesiology. 1999;91(6):1780–7.PubMedGoogle Scholar
  55. 55.
    Matot I, Neely CF, Katz RY, Neufeld GR. Pulmonary uptake of propofol in cats. Effect of fentanyl and halothane. Anesthesiology. 1993;78(6):1157–65.PubMedGoogle Scholar
  56. 56.
    Le Guellec C, Lacarelle B, Villard PH, Point H, Catalin J, Durand A. Glucuronidation of propofol in microsomal fractions from various tissues and species including humans: effect of different drugs. Anesth Analg. 1995;81(4):855–61.PubMedGoogle Scholar
  57. 57.
    Bulger EM, Maier RV. Lipid mediators in the pathophysiology of critical illness. Crit Care Med. 2000;28(4 Suppl):N27–36.PubMedGoogle Scholar
  58. 58.
    Upton RN, Ludbrook G. A physiologically based, recirculatory model of the kinetics and dynamics of propofol in man. Anesthesiology. 2005;103(2):344–52.PubMedGoogle Scholar
  59. 59.
    Kazama T, Ikeda K, Morita K, Ikeda T, Kikura M, Sato S. ­Relation between initial blood distribution volume and propofol induction dose requirement [see comment]. Anesthesiology. 2001;94(2):205–10.PubMedGoogle Scholar
  60. 60.
    Kazama T, Morita K, Ikeda T, Kurita T, Sato S. Comparison of predicted induction dose with predetermined physiologic characteristics of patients and with pharmacokinetic models incorporating those characteristics as covariates. Anesthesiology. 2003;98(2):299–305.PubMedGoogle Scholar
  61. 61.
    Krejcie TC, Jacquez JA, Avram MJ, Niemann CU, Shanks CA, Henthorn TK. Use of parallel Erlang density functions to analyze first-pass pulmonary uptake of multiple indicators in dogs. J Pharmacokinet Biopharm. 1996;24(6):569–88.PubMedGoogle Scholar
  62. 62.
    Ryan JW. Processing of endogenous polypeptides by the lungs. Annu Rev Physiol. 1982;44:241–55.PubMedGoogle Scholar
  63. 63.
    Orfanos SE, Langleben D, Khoury J, et al. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in humans. Circulation. 1999;99(12):1593–9.PubMedGoogle Scholar
  64. 64.
    Skidgel RA. Bradykinin-degrading enzymes: structure, function, distribution, and potential roles in cardiovascular pharmacology. J Cardiovasc Pharmacol. 1992;20 Suppl 9:S4–9.PubMedGoogle Scholar
  65. 65.
    Chand N, Altura BM. Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: role in lung vascular diseases. Science. 1981;213(4514):1376–9.PubMedGoogle Scholar
  66. 66.
    Skidgel RA, Erdos EG. Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies. Peptides. 2004;25(3):521–5.PubMedGoogle Scholar
  67. 67.
    Simke J, Graeme ML, Sigg EB. Bradykinin induced ­bronchoconstriction in guinea pigs and its modification by ­various agents. Arch Int Pharmacodyn Ther. 1967;165(2):291–301.PubMedGoogle Scholar
  68. 68.
    Collier HO. Humoral factors in bronchoconstriction. Sci Basis Med Annu Rev. 1968;308–35.Google Scholar
  69. 69.
    Suguikawa TR, Garcia CA, Martinez EZ, Vianna EO. Cough and dyspnea during bronchoconstriction: comparison of different stimuli. Cough. 2009;5:6.PubMedGoogle Scholar
  70. 70.
    Enseleit F, Hurlimann D, Luscher TF. Vascular protective effects of angiotensin converting enzyme inhibitors and their relation to clinical events. J Cardiovasc Pharmacol. 2001;37 Suppl 1:S21–30.PubMedGoogle Scholar
  71. 71.
    Muntner P, Krousel-Wood M, Hyre AD, et al. Antihypertensive prescriptions for newly treated patients before and after the main antihypertensive and lipid-lowering treatment to prevent heart attack trial results and seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure guidelines [see comment]. Hypertension. 2009;53(4):617–23.PubMedGoogle Scholar
  72. 72.
    Alabaster VA, Bakhle YS. Removal of 5-hydroxytryptamine in the pulmonary circulation of rat isolated lungs. Br J Pharmacol. 1970;40(3):468–82.PubMedGoogle Scholar
  73. 73.
    Gonmori K, Rao KS, Mehendale HM. Pulmonary synthesis of 5-hydroxytryptamine in isolated perfused rabbit and rat lung preparations. Exp Lung Res. 1986;11(4):295–305.PubMedGoogle Scholar
  74. 74.
    Cook DR, Brandom BW. Enflurane, halothane, and isoflurane inhibit removal of 5-hydroxytryptamine from the pulmonary circulation. Anesth Analg. 1982;61(8):671–5.PubMedGoogle Scholar
  75. 75.
    Junod AF. Uptake, metabolism and efflux of 14 C-5-­hydroxytryptamine in isolated perfused rat lungs. J Pharmacol Exp Ther. 1972;183(2):341–55.PubMedGoogle Scholar
  76. 76.
    Righi L, Volante M, Rapa I, Scagliotti GV, Papotti M. Neuro-endocrine tumours of the lung. A review of relevant pathological and molecular data. Virchows Arch. 2007;451 Suppl 1:S51–9.PubMedGoogle Scholar
  77. 77.
    Shah PM, Raney AA. Tricuspid valve disease. Curr Probl Cardiol. 2008;33(2):47–84.PubMedGoogle Scholar
  78. 78.
    Sandmann H, Pakkal M, Steeds R. Cardiovascular magnetic resonance imaging in the assessment of carcinoid heart disease. Clin Radiol. 2009;64(8):761–6.PubMedGoogle Scholar
  79. 79.
    Bernheim AM, Connolly HM, Pellikka PA. Carcinoid heart disease. Curr Treat Options Cardiovasc Med. 2007;9(6):482–9.PubMedGoogle Scholar
  80. 80.
    Droogmans S, Cosyns B, D’Haenen H, et al. Possible association between 3, 4-methylenedioxymethamphetamine abuse and valvular heart disease. Am J Cardiol. 2007;100(9):1442–5.PubMedGoogle Scholar
  81. 81.
    Mizuguchi KA, Fox AA, Burch TM, Cohn LH, Fox JA. Tricuspid and mitral valve carcinoid disease in the setting of a patent foramen ovale. Anesth Analg. 2008;107(6):1819–21.PubMedGoogle Scholar
  82. 82.
    Utsunomiya T, Krausz MM, Shepro D, Hechtman HB. Prostaglandin control of plasma and platelet 5-hydroxytryptamine in normal and embolized animals. Am J Physiol. 1981;241(5):H766–71.PubMedGoogle Scholar
  83. 83.
    Stratmann G, Gregory GA. Neurogenic and humoral vasoconstriction in acute pulmonary thromboembolism [see comment]. Anesth Analg. 2003;97(2):341–54.PubMedGoogle Scholar
  84. 84.
    Huval WV, Mathieson MA, Stemp LI, et al. Therapeutic benefits of 5-hydroxytryptamine inhibition following pulmonary embolism. Ann Surg. 1983;197(2):220–5.PubMedGoogle Scholar
  85. 85.
    Said SI. Metabolic functions of the pulmonary circulation. Circ Res. 1982;50(3):325–33.PubMedGoogle Scholar
  86. 86.
    Philpot RM, Andersson TB, Eling TE. Uptake, accumulation, and metabolism of chemicals by the lung. In: Bakhle YS, Vane JR, editors. Metabolic functions of the lung. New York: Marcel Dekker; 1977. p. 123–71.Google Scholar
  87. 87.
    Garcia JG, Noonan TC, Jubiz W, Malik AB. Leukotrienes and the pulmonary microcirculation. Am Rev Respir Dis. 1987;136(1):161–9.PubMedGoogle Scholar
  88. 88.
    Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987;237(4819):1171–6.PubMedGoogle Scholar
  89. 89.
    Haeggstrom JZ, Kull F, Rudberg PC, Tholander F, Thunnissen MMGM. Leukotriene A4 hydrolase. Prostaglandins Other Lipid Mediat. 2002;68–69:495–510.PubMedGoogle Scholar
  90. 90.
    Yang G, Chen G, Wang D. Effects of prostaglandins and leukotrienes on hypoxic pulmonary vasoconstriction in rats. J Tongji Med Univ. 2000;20(3):197–9.PubMedGoogle Scholar
  91. 91.
    Caironi P, Ichinose F, Liu R, Jones RC, Bloch KD, Zapol WM. 5-Lipoxygenase deficiency prevents respiratory failure during ventilator-induced lung injury [see comment]. Am J Respir Crit Care Med. 2005;172(3):334–43.PubMedGoogle Scholar
  92. 92.
    Leitch AG. The role of leukotrienes in asthma. Ann Acad Med Singapore. 1985;14(3):503–7.PubMedGoogle Scholar
  93. 93.
    Sprague RS, Stephenson AH, Dahms TE, Lonigro AJ. Proposed role for leukotrienes in the pathophysiology of multiple systems organ failure. Crit Care Clin. 1989;5(2):315–29.PubMedGoogle Scholar
  94. 94.
    Orfanos SE, Mavrommati I, Korovesi I, Roussos C. Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intensive Care Med. 2004;30(9):1702–14.PubMedGoogle Scholar
  95. 95.
    Huang SK, Peters-Golden M. Eicosanoid lipid mediators in fibrotic lung diseases: ready for prime time? Chest. 2008;133(6):1442–50.PubMedGoogle Scholar
  96. 96.
    Del Giudice MM, Pezzulo A, Capristo C, et al. Leukotriene modifiers in the treatment of asthma in children. Ther Adv Respir Dis. 2009;3(5):245–51.PubMedGoogle Scholar
  97. 97.
    O’Byrne PM, Gauvreau GM, Murphy DM. Efficacy of leukotriene receptor antagonists and synthesis inhibitors in asthma. J Allergy Clin Immunol. 2009;124(3):397–403.PubMedGoogle Scholar
  98. 98.
    Tantisira KG, Drazen JM. Genetics and pharmacogenetics of the leukotriene pathway. J Allergy Clin Immunol. 2009;124(3): 422–7.PubMedGoogle Scholar
  99. 99.
    Murphy RC, Gijon MA. Biosynthesis and metabolism of ­leukotrienes [erratum appears in Biochem J. 2007 Sep 15;406(3):527]. Biochem J. 2007;405(3):379–95.PubMedGoogle Scholar
  100. 100.
    Romano M. Lipid mediators: lipoxin and aspirin-triggered 15-epi-lipoxins. Inflamm Allergy Drug Targets. 2006;5(2):81–90.PubMedGoogle Scholar
  101. 101.
    Romano M, Recchia I, Recchiuti A. Lipoxin receptors. ThescientificWorldJournal. 2007;7:1393–412.PubMedGoogle Scholar
  102. 102.
    Soyombo O, Spur BW, Lee TH. Effects of lipoxin A4 on chemotaxis and degranulation of human eosinophils stimulated by platelet-activating factor and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Allergy. 1994;49(4):230–4.PubMedGoogle Scholar
  103. 103.
    Raud J, Palmertz U, Dahlen SE, Hedqvist P. Lipoxins inhibit microvascular inflammatory actions of leukotriene B4. Adv Exp Med Biol. 1991;314:185–92.PubMedGoogle Scholar
  104. 104.
    Le Y, Li B, Gong W, et al. Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors. Immunol Rev. 2000;177:185–94.PubMedGoogle Scholar
  105. 105.
    Colgan SP, Serhan CN, Parkos CA, Delp-Archer C, Madara JL. Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J Clin Invest. 1993;92(1):75–82.PubMedGoogle Scholar
  106. 106.
    Brezinski ME, Gimbrone Jr MA, Nicolaou KC, Serhan CN. Lipoxins stimulate prostacyclin generation by human endothelial cells. FEBS Lett. 1989;245(1–2):167–72.PubMedGoogle Scholar
  107. 107.
    Wenzel SE, Busse WW, The National Heart L, Blood Institute’s Severe Asthma Research P. Severe asthma: lessons from the Severe Asthma Research Program. J Allergy Clin Immunol. 2007;119(1):14–21; quiz 22–13.Google Scholar
  108. 108.
    Vachier I, Bonnans C, Chavis C, et al. Severe asthma is associated with a loss of LX4, an endogenous anti-inflammatory compound. J Allergy Clin Immunol. 2005;115(1):55–60.PubMedGoogle Scholar
  109. 109.
    Levy BD, Bonnans C, Silverman ES, et al. Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med. 2005;172(7):824–30.PubMedGoogle Scholar
  110. 110.
    Kupczyk M, Antczak A, Kuprys-Lipinska I, Kuna P. Lipoxin A4 generation is decreased in aspirin-sensitive patients in lysine-aspirin nasal challenge in vivo model. Allergy. 2009;64(12):1746–52.PubMedGoogle Scholar
  111. 111.
    Van Hove CL, Maes T, Joos GF, Tournoy KG. Chronic inflammation in asthma: a contest of persistence vs. resolution. Allergy. 2008;63(9):1095–109.PubMedGoogle Scholar
  112. 112.
    Bonnans C, Levy BD. Lipid mediators as agonists for the resolution of acute lung inflammation and injury. Am J Respir Cell Mol Biol. 2007;36(2):201–5.PubMedGoogle Scholar
  113. 113.
    Serhan CN. Lipoxins and novel aspirin-triggered 15-epi-­lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins. 1997;53(2):107–37.PubMedGoogle Scholar
  114. 114.
    Ramalho TC, Rocha MVJ, da Cunha EFF, Freitas MP. The search for new COX-2 inhibitors: a review of 2002–2008 patents. Expert Opin Ther Pat. 2009;19(9):1193–228.PubMedGoogle Scholar
  115. 115.
    Grosser T. Variability in the response to cyclooxygenase inhibitors: toward the individualization of nonsteroidal anti-­inflammatory drug therapy. J Investig Med. 2009;57(6):709–16.PubMedGoogle Scholar
  116. 116.
    Funk CD, FitzGerald GA. COX-2 inhibitors and cardiovascular risk. J Cardiovasc Pharmacol. 2007;50(5):470–9.PubMedGoogle Scholar
  117. 117.
    Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477–9.PubMedGoogle Scholar
  118. 118.
    Eling TE, Ally AI. Pulmonary biosynthesis and metabolism of prostaglandins and related substances. Environ Health Perspect. 1984;55:159–68.PubMedGoogle Scholar
  119. 119.
    Robinson C, Hardy CC, Holgate ST. Pulmonary synthesis, release, and metabolism of prostaglandins. J Allergy Clin Immunol. 1985;76(2 Pt 2):265–71.PubMedGoogle Scholar
  120. 120.
    McGiff JC, Terragno NA, Strand JC, Lee JB, Lonigro AJ, Ng KK. Selective passage of prostaglandins across the lung. Nature. 1969;223(5207):742–5.PubMedGoogle Scholar
  121. 121.
    Dusting GJ, Moncada S, Vane JR. Recirculation of prostacyclin (PGI2) in the dog. Br J Pharmacol. 1978;64(2):315–20.PubMedGoogle Scholar
  122. 122.
    Gardiner PJ. Eicosanoids and airway smooth muscle. Pharmacol Ther. 1989;44(1):1–62.PubMedGoogle Scholar
  123. 123.
    Regner KR, Connolly HM, Schaff HV, Albright RC. Acute renal failure after cardiac surgery for carcinoid heart disease: incidence, risk factors, and prognosis. Am J Kidney Dis. 2005;45(5):826–32.PubMedGoogle Scholar
  124. 124.
    Zeldin DC, Foley J, Ma J, et al. CYP2J subfamily P450s in the lung: expression, localization, and potential functional significance. Mol Pharmacol. 1996;50(5):1111–7.PubMedGoogle Scholar
  125. 125.
    Salvail D, Dumoulin M, Rousseau E. Direct modulation of tracheal Cl – channel activity by 5, 6- and 11, 12-EET. Am J Physiol. 1998;275(3 Pt 1):L432–41.PubMedGoogle Scholar
  126. 126.
    Birks EK, Bousamra M, Presberg K, Marsh JA, Effros RM, Jacobs ER. Human pulmonary arteries dilate to 20-HETE, an endogenous eicosanoid of lung tissue. Am J Physiol. 1997;272(5 Pt 1):L823–9.PubMedGoogle Scholar
  127. 127.
    Jacobs ER, Zeldin DC. The lung HETEs (and EETs) up. Am J Physiol Heart Circ Physiol. 2001;280(1):H1–10.PubMedGoogle Scholar
  128. 128.
    Sirois P, Gutkowska J. Atrial natriuretic factor ­immunoreactivity in human fetal lung tissue and perfusates. Hypertension. 1988;11(2 Pt 2):I62–5.PubMedGoogle Scholar
  129. 129.
    Di Nardo P, Peruzzi G. Physiology and pathophysiology of atrial natriuretic factor in lungs. Can J Cardiol. 1992;8(5):503–8.PubMedGoogle Scholar
  130. 130.
    Turrin M, Gillis CN. Removal of atrial natriuretic peptide by perfused rabbit lungs in situ. Biochem Biophys Res Commun. 1986;140(3):868–73.PubMedGoogle Scholar
  131. 131.
    Tomlinson JW, Walker EA, Bujalska IJ, et al. 11beta-­hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25(5):831–66.PubMedGoogle Scholar
  132. 132.
    Garbrecht MR, Klein JM, Schmidt TJ, Snyder JM. Glucocorticoid metabolism in the human fetal lung: implications for lung development and the pulmonary surfactant system. Biol Neonate. 2006;89(2):109–19.PubMedGoogle Scholar
  133. 133.
    Baker RW, Walker BR, Shaw RJ, et al. Increased cortisol: cortisone ratio in acute pulmonary tuberculosis. Am J Respir Crit Care Med. 2000;162(5):1641–7.PubMedGoogle Scholar
  134. 134.
    Huang CH, Huang HH, Chen TL, Wang MJ. Perioperative changes of plasma endothelin-1 concentrations in patients undergoing cardiac valve surgery. Anaesth Intensive Care. 1996;24(3):342–7.PubMedGoogle Scholar
  135. 135.
    Dupuis J, Cernacek P, Tardif JC, et al. Reduced pulmonary clearance of endothelin-1 in pulmonary hypertension. Am Heart J. 1998;135(4):614–20.PubMedGoogle Scholar
  136. 136.
    Drinker CK, Churchill ED, Ferry RM. The volume of blood in the heart and lungs. Am J Physiol. 1926;(lxxvii):590–622.Google Scholar
  137. 137.
    Campbell I, Waterhouse J. Fluid balance and non-­respiratory functions of the lung. Anaesth Intensive Care Med. 2005;6(11):370–1.Google Scholar
  138. 138.
    Cotter G, Metra M, Milo-Cotter O, Dittrich HC, Gheorghiade M. Fluid overload in acute heart failure – re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail. 2008;10(2):165–9.PubMedGoogle Scholar
  139. 139.
    Jules-Elysee K, Blanck TJJ, Catravas JD, et al. Angiotensin-converting enzyme activity: a novel way of assessing pulmonary changes during total knee arthroplasty. Anesth Analg. 2004;99(4):1018–23.PubMedGoogle Scholar
  140. 140.
    Lovering AT, Stickland MK, Kelso AJ, Eldridge MW. Direct demonstration of 25- and 50-microm arteriovenous pathways in healthy human and baboon lungs. Am J Physiol Heart Circ Physiol. 2007;292(4):H1777–81.PubMedGoogle Scholar
  141. 141.
    Lovering AT, Haverkamp HC, Romer LM, Hokanson JS, Eldridge MW. Transpulmonary passage of 99mTc macroaggregated albumin in healthy humans at rest and during maximal exercise. J Appl Physiol. 2009;106(6):1986–92.PubMedGoogle Scholar
  142. 142.
    Abrams GA, Rose K, Fallon MB, et al. Hepatopulmonary syndrome and venous emboli causing intracerebral hemorrhages after liver transplantation: a case report. Transplantation. 1999;68(11):1809–11.PubMedGoogle Scholar
  143. 143.
    Colohan AR, Perkins NA, Bedford RF, Jane JA. Intravenous fluid loading as prophylaxis for paradoxical air embolism. J Neurosurg. 1985;62(6):839–42.PubMedGoogle Scholar
  144. 144.
    Breeze RG, Wheeldon EB. The cells of the pulmonary airways. Am Rev Respir Dis. 1977;116(4):705–77.PubMedGoogle Scholar
  145. 145.
    Rogers DF. The airway goblet cell. Int J Biochem Cell Biol. 2003;35(1):1–6.PubMedGoogle Scholar
  146. 146.
    Huffmyer JL, Littlewood KE, Nemergut EC. Perioperative management of the adult with cystic fibrosis. Anesth Analg. 2009;109(6):1949–61.PubMedGoogle Scholar
  147. 147.
    Nadel JA. Neural control of airway submucosal gland secretion. Eur J Respir Dis Suppl. 1983;128(Pt 1):322–6.PubMedGoogle Scholar
  148. 148.
    Reid L. Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax. 1960;15: 132–41.PubMedGoogle Scholar
  149. 149.
    Gallagher JT, Kent PW, Passatore M, Phipps RJ, Richardson PS. The composition of tracheal mucus and the nervous control of its secretion in the cat. Proceedings of the Royal Society of London. Dec 31 1975;Series B, Containing Papers of a Biological Character. 1975;192(1106):49–76.Google Scholar
  150. 150.
    Heidsiek JG, Hyde DM, Plopper CG, St George JA. Quantitative histochemistry of mucosubstance in tracheal epithelium of the macaque monkey. J Histochem Cytochem. 1987;35(4):435–42.PubMedGoogle Scholar
  151. 151.
    Evans CM, Williams OW, Tuvim MJ, et al. Mucin is produced by clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol. 2004;31(4):382–94.PubMedGoogle Scholar
  152. 152.
    Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of clara cells in normal human airway epithelium. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1585–91.PubMedGoogle Scholar
  153. 153.
    Reynolds SD, Malkinson AM. Clara cell: progenitor for the bronchiolar epithelium. Int J Biochem Cell Biol. 2009;42(1):1–4.PubMedGoogle Scholar
  154. 154.
    Krishnaswamy G, Ajitawi O, Chi DS. The human mast cell: an overview. Methods Mol Biol. 2006;315:13–34.PubMedGoogle Scholar
  155. 155.
    Taube C, Stassen M. Mast cells and mast cell-derived factors in the regulation of allergic sensitization. Chem Immunol Allergy. 2008;94:58–66.PubMedGoogle Scholar
  156. 156.
    Peters A, Veronesi B, Calderon-Garciduenas L, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol [Electronic Resource]. 2006;3:13.Google Scholar
  157. 157.
    Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ. Modulation of dendritic cell trafficking to and from the airways. J Immunol. 2006;176(6):3578–84.PubMedGoogle Scholar
  158. 158.
    Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82(3):569–600.PubMedGoogle Scholar
  159. 159.
    Matthay MA, Clerici C, Saumon G. Invited review: active fluid clearance from the distal air spaces of the lung. J Appl Physiol. 2002;93(4):1533–41.PubMedGoogle Scholar
  160. 160.
    Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol. 2007;293(2):L259–71.PubMedGoogle Scholar
  161. 161.
    Weaver TE, Conkright JJ. Function of surfactant proteins B and C. Annu Rev Physiol. 2001;63:555–78.PubMedGoogle Scholar
  162. 162.
    Wanner A, Salathe M, O’Riordan TG. Mucociliary clearance in the airways. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1868–902.PubMedGoogle Scholar
  163. 163.
    Boucher RC. Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med. 2007;261(1):5–16.PubMedGoogle Scholar
  164. 164.
    McFadden Jr ER. Heat and water exchange in human airways. Am Rev Respir Dis. 1992;146(5 Pt 2):S8–10.PubMedGoogle Scholar
  165. 165.
    Crouch E, Wright JR. Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol. 2001;63:521–54.PubMedGoogle Scholar
  166. 166.
    Wu H, Kuzmenko A, Wan S, et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability [see comment]. J Clin Invest. 2003; 111(10):1589–602.PubMedGoogle Scholar
  167. 167.
    Wright JR. Pulmonary surfactant: a front line of lung host defense [comment]. J Clin Invest. 2003;111(10):1453–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lauren Yeazell
    • 1
  • Keith Littlewood
    • 1
  1. 1.Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations