Skip to main content

Clinical Management of One-Lung Ventilation

  • Chapter
  • First Online:
Book cover Principles and Practice of Anesthesia for Thoracic Surgery

Abstract

Ventilation needs to be individualized for the underlying lung pathology. Ventilation is a modifiable risk factor for acute lung injury. Protective lung ventilation is a combination of small tidal volumes, low peak and plateau pressures, routine PEEP and permissive hypercapnea. Hypoxia during one-lung ventilation is rare and often secondary to alveolar de-recruitment in the face of hypoventilation. Management of hypoxia requires a structured treatment algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brodsky JB. The evolution of thoracic anesthesia. Thorac Surg Clin. 2005;15(1):1–10.

    PubMed  Google Scholar 

  2. Lohser J. Evidence-based management of one-lung ventilation. Anesthesiol Clin. 2008;26(2):241–72.

    PubMed  Google Scholar 

  3. Zeldin RA, Normandin D, Landtwing D, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87(3):359–65.

    PubMed  CAS  Google Scholar 

  4. Licker M, Fauconnet P, Villiger Y, Tschopp JM. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anesthesiol. 2009;22(1):61–7.

    Google Scholar 

  5. Dulu A, Pastores SM, Park B, Riedel E, Rusch V, Halpern NA. Prevalence and mortality of acute lung injury and ARDS after lung resection. Chest. 2006;130(1):73–8.

    PubMed  Google Scholar 

  6. Bernard GR, Artigas A, Brigham KL, et al. The American-­European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–24.

    PubMed  CAS  Google Scholar 

  7. Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558–65.

    PubMed  Google Scholar 

  8. Ruffini E, Parola A, Papalia E, et al. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. Eur J Cardiothorac Surg. 2001;20(1):30–7.

    PubMed  CAS  Google Scholar 

  9. Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69(2):376–80.

    PubMed  CAS  Google Scholar 

  10. Alam N, Park BJ, Wilton A, et al. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg. 2007;84(4):1085–91.

    PubMed  Google Scholar 

  11. Tang SS, Redmond K, Griffiths M, Ladas G, Goldstraw P, Dusmet M. The mortality from acute respiratory distress syndrome after pulmonary resection is reducing: a 10-year single institutional experience. Eur J Cardiothorac Surg. 2008;34(4):898–902.

    PubMed  Google Scholar 

  12. Jordan S, Mitchell JA, Quinlan GJ, Goldstraw P, Evans TW. The pathogenesis of lung injury following pulmonary resection. Eur Respir J. 2000;15(4):790–9.

    PubMed  CAS  Google Scholar 

  13. Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 2006;32(1):24–33.

    PubMed  Google Scholar 

  14. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.

    PubMed  CAS  Google Scholar 

  15. Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volumes should be used in patients without acute lung injury? Anesthesiology. 2007;106(6):1226–31.

    PubMed  Google Scholar 

  16. Putensen C, Wrigge H. Tidal volumes in patients with normal lungs: one for all or the less, the better? Anesthesiology. 2007; 106(6):1085–7.

    PubMed  Google Scholar 

  17. Padley SPG, Jordan SJ, Goldstraw P, Wells AU, Hansell DM. Asymmetric ARDS following pulmonary resection: CT findings initial observations. Radiology. 2002;223(2):468–73.

    PubMed  Google Scholar 

  18. Yin K, Gribbin E, Emanuel S, et al. Histochemical alterations in one-lung ventilation. J Surg Res. 2007;137(1):16–20.

    PubMed  CAS  Google Scholar 

  19. Kozian A, Schilling T, Fredén F, et al. One-lung ventilation induces hyperperfusion and alveolar damage in the ventilated lung: an experimental study. Br J Anaesth. 2008;100(4):549–59.

    PubMed  CAS  Google Scholar 

  20. Funakoshi T, Ishibe Y, Okazaki N, et al. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and proinflammatory cytokine gene expression in isolated rabbit lungs. Br J Anaesth. 2004;92(4):558–63.

    PubMed  CAS  Google Scholar 

  21. Schilling T, Kozian A, Huth C, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101(4):957–65.

    PubMed  Google Scholar 

  22. Michelet P, D’Journo XB, Roch A, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105(5):911–9.

    PubMed  Google Scholar 

  23. Sentürk M. New concepts of the management of one-lung ventilation. Curr Opin Anaesthesiol. 2006;19(1):1–4.

    PubMed  Google Scholar 

  24. De Conno E, Steurer MP, Wittlinger M, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316–26.

    PubMed  Google Scholar 

  25. Giraud O, Molliex S, Rolland C, et al. Halogenated anesthetics reduce interleukin-1β-induced cytokine secretion by rat alveolar type II cells in primary culture. Anesthesiology. 2003;98(1):74–81.

    PubMed  CAS  Google Scholar 

  26. Schilling T, Kozian A, Kretzschmar M, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99(3):368–75.

    PubMed  CAS  Google Scholar 

  27. Cohen E. Management of one-lung ventilation. Anesthesiol Clin North America. 2001;19(3):475–95.

    PubMed  CAS  Google Scholar 

  28. Brodsky JB, Fitzmaurice B. Modern anesthetic techniques for thoracic operations. World J Surg. 2001;25(2):162–6.

    PubMed  CAS  Google Scholar 

  29. Bendixen HH, Hedley-Whyte J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med. 1963;269:991–6.

    PubMed  CAS  Google Scholar 

  30. Katz JA, Laverne RG, Fairley HB, Thomas AN. Pulmonary oxygen exchange during endobronchial anesthesia: effect of tidal volume and PEEP. Anesthesiology. 1982;56(3):164–71.

    PubMed  CAS  Google Scholar 

  31. Flacke JW, Thompson DS, Read RC. Influence of tidal volume and pulmonary artery occlusion on arterial oxygenation during endobronchial anesthesia. South Med J. 1976;69(5):619–26.

    PubMed  CAS  Google Scholar 

  32. van der Werff YD, van der Houwen HK, Heijmans PJ, et al. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111(5):1278–84.

    PubMed  Google Scholar 

  33. Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105(1):14–8.

    PubMed  Google Scholar 

  34. Neustein S. Association of high tidal volume with postpneumonectomy failure. Anesthesiology. 2007;106(4):875–6.

    PubMed  Google Scholar 

  35. Jeon K, Yoon JW, Suh GY, et al. Risk factors for post-­pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth Intensive Care. 2009;37(1):14–9.

    PubMed  CAS  Google Scholar 

  36. Gama de Abreu M, Heintz M, Heller A, Szechenyi R, Albrecht DM, Koch T. One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg. 2003;96(1):220–8.

    PubMed  Google Scholar 

  37. Kuzkov VV, Suborov EV, Kirov MY, et al. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35(6):1550–9.

    PubMed  Google Scholar 

  38. Chiumello D, Pristine G, Slutsky A. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;160(1):109–16.

    PubMed  CAS  Google Scholar 

  39. Cepkova M, Brady S, Sapru A, Matthay MA, Church G. Biological markers of lung injury before and after the institution of positive pressure ventilation in patients with acute lung injury. Crit Care. 2006;10(5):R126.

    PubMed  Google Scholar 

  40. Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33(1):1–6.

    PubMed  CAS  Google Scholar 

  41. Wrigge H, Uhlig U, Zinserling J, et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg. 2004;98(3):775–81.

    PubMed  Google Scholar 

  42. Boyle NH, Pearce A, Hunter D, Owen WJ, Mason RC. Intraoperative scanning laser Doppler flowmetry in the assessment of gastric tube perfusion during esophageal resection. J Am Coll Surg. 1999;188(5):498–502.

    PubMed  CAS  Google Scholar 

  43. Tusman G, Böhm SH, Suárez Sipmann F, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98(6):1604–9.

    PubMed  Google Scholar 

  44. Licker M, Diaper J, Villiger Y, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13(2):R41.

    PubMed  Google Scholar 

  45. Klingstedt C, Hedenstierna G, Baehrendtz S, Lundqvist H, Strandberg A, Tokics L, et al. Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional mechanical and differential ventilation. Acta Anaesthesiol Scand. 1990;34(6):421–9.

    PubMed  CAS  Google Scholar 

  46. Ducros L, Moutafis M, Castelain MH, Liu N, Fischler M. Pulmonary air trapping during two-lung and one-lung ventilation. J Cardiothorac Vasc Anesth. 1999;13(1):35–9.

    PubMed  CAS  Google Scholar 

  47. Slinger PD, Hickey DR. The interaction between applied PEEP and auto-PEEP during one-lung ventilation. J Cardiothorac Vasc Anesth. 1998;12(2):133–6.

    PubMed  CAS  Google Scholar 

  48. Caramez MP, Borges JB, Tucci MR, et al. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005;33(7):1519–28.

    PubMed  Google Scholar 

  49. Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95(5):1096–102.

    PubMed  CAS  Google Scholar 

  50. Valenza F, Ronzoni G, Perrone L, et al. Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. Eur J Anaesthesiol. 2004;21(12):938–43.

    PubMed  CAS  Google Scholar 

  51. Ren Y, Peng ZL, Xue QS, Yu BW. The effect of timing of application of positive end-expiratory pressure on oxygenation during one-lung ventilation. Anaesth Intensive Care. 2008;36(4):544–8.

    PubMed  CAS  Google Scholar 

  52. Bardoczky GI, d’Hollander AA, Cappello M, Yernault JC, et al. Interrupted expiratory flow on automatically constructed flow volume curves may determine the presence of intrinsic positive end-expiratory pressure during one-lung ventilation. Anesth Analg. 1998;86(4):880–4.

    PubMed  CAS  Google Scholar 

  53. Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29(4):591–5.

    PubMed  Google Scholar 

  54. Douzinas EE, Kollias S, Tiniakos D, et al. Hypoxemic ­reperfusion after 120 mins of intestinal ischemia attenuates the histopathologic and inflammatory response. Crit Care Med. 2004;32(11):2279–83.

    PubMed  Google Scholar 

  55. Duggan M, Kavanagh BP. Atelectasis in the perioperative patient. Curr Opin Anaesthesiol. 2007;20(1):37–42.

    PubMed  Google Scholar 

  56. Bardoczky GI, Szegedi LL, d’Hollander AA, Moures JM, De Francquen P, Yernault JC. Two-lung and one-lung ventilation in patients with chronic obstructive pulmonary disease: the effects of position and F(IO)2. Anesth Analg. 2000;90(1):35–41.

    PubMed  CAS  Google Scholar 

  57. Ko R, McRae K, Darling G, et al. The use of air in the inspired gas mixture during two-lung ventilation delays lung collapse during one-lung ventilation. Anesth Analg. 2009;108(4):1092–6.

    PubMed  Google Scholar 

  58. Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med. 2006;34(1):1–7.

    PubMed  Google Scholar 

  59. Lang CJ, Barnett EK, Doyle IR. Stretch and CO2 modulate the inflammatory response of alveolar macrophages through independent changes in metabolic activity. Cytokine. 2006;33(6):346–51.

    PubMed  CAS  Google Scholar 

  60. Sticher J, Muller M, Scholz S, Schindler E, Hempelmann G. Controlled hypercapnia during one-lung ventilation in patients undergoing pulmonary resection. Acta Anaesthesiol Scand. 2001;45(7):842–7.

    PubMed  CAS  Google Scholar 

  61. Zollinger A, Zaugg M, Weder W, et al. Video-assisted thoracoscopic volume reduction surgery in patients with diffuse pulmonary emphysema: gas exchange and anesthesiological management. Anesth Analg. 1997;84(4):845–51.

    PubMed  CAS  Google Scholar 

  62. Morisaki H, Serita R, Innami Y, Kotake Y, Takeda J. Permissive hypercapnia during thoracic anaesthesia. Acta Anaesthesiol Scand. 1999;43(8):845–9.

    PubMed  CAS  Google Scholar 

  63. Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94(4):1543–51.

    PubMed  Google Scholar 

  64. Robinson RJ, Shennib H, Noirclerc M. Slow-rate, high-pressure ventilation: a method of management of difficult transplant recipients during sequential double lung transplantation for cystic fibrosis. J Heart Lung Transplant. 1994;13(5):779–84.

    PubMed  CAS  Google Scholar 

  65. Szegedi LL, Barvais L, Sokolow Y, Yernault JC, D’Hollander AA. Intrinsic positive end-expiratory pressure during one-lung ventilation of patients with pulmonary hyperinflation. Influence of low respiratory rate with unchanged minute volume. Br J Anaesth. 2002;88(1):56–60.

    PubMed  CAS  Google Scholar 

  66. Slinger PD, Lesiuk L. Flow resistances of disposible double-lumen, single-lumen, and univent tubes. J Cardiothorac Vasc Anesth. 1998;12(2):142–4.

    PubMed  CAS  Google Scholar 

  67. Szegedi LL, Bardoczky GI, Engelman EE, D’Hollander AA. ­Airway pressure changes during one-lung ventilation. Anesth Analg. 1997;84(5):1034–7.

    PubMed  CAS  Google Scholar 

  68. Fernández-Pérez ER, Sprung J, Afessa B, et al. Intraoperative ventilator settings and acute lung injury after elective surgery: a nested case control study. Thorax. 2009;64(2):121–7.

    PubMed  Google Scholar 

  69. Nichols D, Haranath S. Pressure control ventilation. Crit Care Clin. 2007;23(2):183–99.

    PubMed  Google Scholar 

  70. Tuğrul M, Camci E, Karadeniz H, Sentürk M, Pembeci K, Akpir K. Comparison of volume-controlled with pressure-­controlled ventilation during one-lung anaesthesia. Br J Anaesth. 1997;79(3):306–10.

    PubMed  Google Scholar 

  71. Sentürk NM, Dilek A, Camci E, et al. Effects of positive end-expiratory pressure on ventilatory and oxygenation parameters during pressure-controlled one-lung ventilation. J Cardiothorac Vasc Anesth. 2005;19(1):71–5.

    PubMed  Google Scholar 

  72. Unzueta MC, Casas JI, Moral MV. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg. 2007;104(5):1029–33.

    PubMed  Google Scholar 

  73. Leong LM, Chatterjee S, Gao F. The effect of positive end-expiratory pressure on the respiratory profile during one-lung ventilation for thoracotomy. Anaesthesia. 2007;62(1):23–6.

    PubMed  CAS  Google Scholar 

  74. Choi YS, Shim JK, Na S, Hong SB, Hong YW, Oh YJ. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation in the prone position for robot-assisted esophagectomy. Surg Endosc. 2009;23(10):2286–91.

    PubMed  Google Scholar 

  75. Heimberg C, Winterhalter M, Strüber M, Piepenbrock S, Bund M. Pressure-controlled versus volume-controlled one-lung ventilation for MIDCAB. Thorac Cardiovasc Surg. 2006;54(8):516–20.

    PubMed  CAS  Google Scholar 

  76. Cruz Pardos P, Garutti I, Piñeiro P, Olmedilla L, de la Gala F. Effects of ventilatory mode during one-lung ventilation on intraoperative and postoperative arterial oxygenation in thoracic surgery. J Cardiothorac Vasc Anesth. 2009;23(6):770–4.

    Google Scholar 

  77. Ihra G, Gockner G, Kashanipour A, Aloy A. High-frequency jet ventilation in European and North American institutions: developments and clinical practice. Eur J Anaesthesiol. 2000;17(7):418–30.

    PubMed  CAS  Google Scholar 

  78. Abe K, Oka J, Takahashi H, Funatsu T, Fukuda H, Miyamoto Y. Effect of high-frequency jet ventilation on oxygenation during one-lung ventilation in patients undergoing thoracic aneurysm surgery. J Anesth. 2006;20(1):1–5.

    PubMed  Google Scholar 

  79. Knuttgen D, Zeidler D, Vorweg M, Doehn M. Unilateral high-frequency jet ventilation supporting one-lung ventilation during thoracic surgical procedures. Anaesthesist. 2001;50(8):585–9.

    PubMed  CAS  Google Scholar 

  80. Misiolek H, Knapik P, Swanevelder J, Wyatt R, Misiolek M. Comparison of double-lung jet ventilation and one-lung ventilation for thoracotomy. Eur J Anaesthesiol. 2008;25(1):15–21.

    PubMed  CAS  Google Scholar 

  81. Buise M, van Bommel J, van Genderen M, Tilanus H, van Zundert A, Gommers D. Two-lung high-frequency jet ventilation as an alternative ventilation technique during transthoracic esophagectomy. J Cardiothorac Vasc Anesth. 2009;23(4):509–12.

    PubMed  Google Scholar 

  82. Lentz CW, Peterson HD. Smoke inhalation is a multilevel insult to the pulmonary system. Curr Opin Pulm Med. 1997;3(3):221–6.

    PubMed  CAS  Google Scholar 

  83. Reper P, Dankaert R, van Hille F, van Laeke P, Duinslaeger L, Vanderkelen A. The usefulness of combined high-frequency percussive ventilation during acute respiratory failure after smoke inhalation. Burns. 1998;24(1):34–8.

    PubMed  CAS  Google Scholar 

  84. Velmahos GC, Chan LS, Tatevossian R, et al. High-frequency percussive ventilation improves oxygenation in patients with ARDS. Chest. 1999;116(2):440–6.

    PubMed  CAS  Google Scholar 

  85. Lucangelo U, Antonaglia V, Zin WA, et al. High-frequency percussive ventilation improves perioperatively clinical evolution in pulmonary resection. Crit Care Med. 2009;37(5):1663–9.

    PubMed  Google Scholar 

  86. Duggan M, McCaul CL, McNamara PJ, Engelberts D, Ackerley C, Kavanagh BP. Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs. Am J Respir Crit Care Med. 2003;167(12):1633–40.

    PubMed  Google Scholar 

  87. Cinnella G, Grasso S, Natale C, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52(6):766–75.

    PubMed  CAS  Google Scholar 

  88. Michelet P, Roch A, Brousse D, et al. Effects of PEEP on oxygenation and respiratory mechanics during one-lung ventilation. Br J Anaesth. 2005;95(2):267–73.

    PubMed  CAS  Google Scholar 

  89. Vieillard-Baron A, Charron C, Jardin F. Lung ­“recruitment” or lung overinflation maneuvers? Intensive Care Med. 2006;32(1):177–8.

    PubMed  Google Scholar 

  90. Garutti I, Martinez G, Cruz P, Piñeiro P, Olmedilla L, de la Gala F. The impact of lung recruitment on hemodynamics during one-lung ventilation. J Cardiothorac Vasc Anesth. 2009;23(4): 506–8.

    PubMed  Google Scholar 

  91. Koh WJ, Suh GY, Han J, et al. Recruitment maneuvers attenuate repeated derecruitment-associated lung injury. Crit Care Med. 2005;33(5):1070–6.

    PubMed  Google Scholar 

  92. Suh GY, Koh Y, Chung MP, et al. Repeated derecruitments accentuate lung injury during mechanical ventilation. Crit Care Med. 2002;30(8):1848–53.

    PubMed  Google Scholar 

  93. Farias LL, Faffe DS, Xisto DG, et al. Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol. 2005;98(1):53–61.

    PubMed  Google Scholar 

  94. Halbertsma FJ, Vanekern M, Pickkers P, Neeleman C, Scheffer GJ, van der Hoeven JG. A single recruitment maneuver in ventilated critically ill children can translocate pulmonary cytokines into the circulation. J Crit Care. 2010;25(1):10–5.

    PubMed  CAS  Google Scholar 

  95. Meade MO, Cook DJ, Griffith LE, et al. A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir Care. 2008;53(11):1441–9.

    PubMed  Google Scholar 

  96. Sivrikoz MC, Tuncozgur B, Cekmen M, et al. The role of tissue reperfusion in the re-expansion injury of the lungs. Eur J Cardiothorac Surg. 2002;22(5):721–7.

    PubMed  Google Scholar 

  97. Ojima H, Kuwano H, Kato H, et al. Relationship between cytokine response and temporary ventilation during one-lung ventilation in esophagectomy. Hepatogastroenterology. 2007;54(73):111–5.

    PubMed  CAS  Google Scholar 

  98. Hansen LK, Koefoed-Nielsen J, Nielsen J, Larsson A. Are selective lung recruitment maneuvers hemodynamically safe in severe hypovolemia? An experimental study in hypovolemic pigs with lobar collapse. Anesth Analg. 2007;105(3):729–34.

    PubMed  Google Scholar 

  99. Mahfood S, Hix WR, Aaron BL, Blaes P, Watson DC. Re-­expansion pulmonary edema. Ann Thorac Surg. 1988;45(3):340–5.

    PubMed  CAS  Google Scholar 

  100. Tekinbas C, Ulusoy H, Yulug E, et al. One-lung ventilation: for how long? J Thorac Cardiovasc Surg. 2007;134(2):405–10.

    PubMed  Google Scholar 

  101. Hurford WE, Kolker AC, Strauss HW. The use of ventilation/perfusion lung scans to predict oxygenation during one-lung anesthesia. Anesthesiology. 1987;67(5):841–4.

    PubMed  CAS  Google Scholar 

  102. Slinger P, Suissa S, Adam J, Triolet W. Predicting arterial oxygenation during one-lung ventilation with continuous positive airway pressure to the nonventilated lung. J Cardiothorac Anesth. 1990;4(4):436–40.

    PubMed  CAS  Google Scholar 

  103. Yamamoto Y, Watanabe S, Kano T. Gradient of bronchial end-tidal CO2 during two-lung ventilation in lateral decubitus position is predictive of oxygenation disorder during subsequent one-lung ventilation. J Anesth. 2009;23(2):192–7.

    PubMed  Google Scholar 

  104. Fukuoka N, Iida H, Akamatsu S, Nagase K, Iwata H, Dohi S. The association between the initial end-tidal carbon dioxide difference and the lowest arterial oxygen tension value obtained during one-lung anesthesia with propofol or sevoflurane. J Cardiothorac Vasc Anesth. 2009;23(6):775–9.

    PubMed  CAS  Google Scholar 

  105. Hurford WE, Alfille PH. A quality improvement study of the placement and complications of double-lumen endobronchial tubes. J Cardiothorac Vasc Anesth. 1993;7(5):517–20.

    PubMed  CAS  Google Scholar 

  106. Brodsky JB, Lemmens HJ. Left double-lumen tubes: clinical experience with 1170 patients. J Cardiothorac Vasc Anesth. 2003;17(3):289–98.

    PubMed  Google Scholar 

  107. Ehrenfeld JM, Walsh JL, Sandberg WS. Right- and left-sided Mallinckrodt double-lumen tubes have identical clinical performance. Anesth Analg. 2008;106(6):1847–52.

    PubMed  Google Scholar 

  108. Baraka AS, Taha SK, Yaacoub CI. Alarming hypoxemia during one-lung ventilation in a patient with respiratory bronchiolitis-associated interstitial lung disease. Can J Anaesth. 2003;50(4):411–4.

    PubMed  Google Scholar 

  109. Russell WJ. Intermittent positive airway pressure to manage hypoxia during one-lung anaesthesia. Anaesth Intensive Care. 2009;37(3):432–4.

    PubMed  CAS  Google Scholar 

  110. Ku CM, Slinger P, Waddell TK. A novel method of treating hypoxemia during one-lung ventilation for thoracoscopic surgery. J Cardiothorac Vasc Anesth. 2009;23(6):850–2.

    PubMed  Google Scholar 

  111. Mierdl S, Meininger D, Dogan S, et al. Does poor oxygenation during one-lung ventilation impair aerobic myocardial metabolism in patients with symptomatic coronary artery disease? Interact Cardiovasc Thorac Surg. 2007;6(2):209–13.

    PubMed  Google Scholar 

  112. Casati A, Fanelli G, Pietropaoli P, et al. Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg. 2005;101(3):740–7.

    PubMed  Google Scholar 

  113. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104(1):51–8.

    PubMed  Google Scholar 

  114. Tobias JD, Johnson GA, Rehman S, Fisher R, Caron N. Cerebral oxygenation monitoring using near infrared spectroscopy during one-lung ventilation in adults. J Minim Access Surg. 2008;4(4):104–7.

    PubMed  Google Scholar 

  115. Iwata M, Inoue S, Kawaguchi M, et al. Jugular bulb venous oxygen saturation during one-lung ventilation under sevoflurane- or propofol-based anesthesia for lung surgery. J Cardiothorac Vasc Anesth. 2008;22(1):71–6.

    PubMed  CAS  Google Scholar 

  116. Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.

    PubMed  Google Scholar 

  117. Vandesteene A, Trempont V, Engelman E, et al. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia. 1988;43(Suppl):42–3.

    PubMed  CAS  Google Scholar 

  118. Kazan R, Bracco D, Hemmerling TM. Reduced cerebral oxygen saturation measured by absolute cerebral oximetry during thoracic surgery correlates with postoperative complications. Br J Anaesth. 2009;103(6):811–6.

    PubMed  CAS  Google Scholar 

  119. Yuluğ E, Tekinbas C, Ulusoy H, et al. The effects of oxidative stress on the liver and ileum in rats caused by one-lung ventilation. J Surg Res. 2007;139(2):253–60.

    PubMed  Google Scholar 

  120. Kozian A et al. Lung computed tomography density distribution in a porcine model of one-lung ventilation. Br J Anaesth. 2009;102(4):551–60.

    PubMed  CAS  Google Scholar 

  121. Dueck R et al. A pilot study of expiratory flow limitation and lung volume reduction surgery. Chest. 1999;116:1762–71.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lohser, J., Ishikawa, S. (2011). Clinical Management of One-Lung Ventilation. In: Slinger, MD, FRCPC, P. (eds) Principles and Practice of Anesthesia for Thoracic Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0184-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0184-2_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0183-5

  • Online ISBN: 978-1-4419-0184-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics