Advertisement

On Common Linear/Quadratic Lyapunov Functions for Switched Linear Systems

  • Melania M. Moldovan
  • M. Seetharama Gowda
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 35)

Abstract

Using duality, complementarity ideas, and Z-transformations, in this chapter we discuss equivalent ways of describing the existence of common linear/quadratic Lyapunov functions for switched linear systems. In particular, we extend a recent result of Mason–Shorten on positive switched system with two constituent linear time-invariant systems to an arbitrary finite system.

Keywords

Lyapunov Function Linear Complementarity Problem Euclidean Jordan Algebra Positive Determinant Proper Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Akar, A. Paul, M.G. Safonov, and U. Mitra, Conditions on the stability of a class of second-order switched systems, IEEE Transactions on Automatic Control, 51 (2006) 338–340.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM, Philadelphia, PA, 1994.MATHGoogle Scholar
  3. 3.
    A. Berman and N. Shaked-Monderer, Completely positive matrices, World Scientific, Singapore, 2003.MATHCrossRefGoogle Scholar
  4. 4.
    R.W. Cottle, J.S. Pang, and R.E. Stone, The linear complementarity problem, Academic Press, Boston, 1992.MATHGoogle Scholar
  5. 5.
    L. Elsner, Quasimonotonie und Ungleischungen in halbgeordneten Räumen, Linear Algebra and its Applications, 8 (1974) 249–261.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Faraut and A. Koranyi, Analysis on symmetric cones, Oxford University Press, Oxford 1994.MATHGoogle Scholar
  7. 7.
    L. Farina and S. Rinaldi, Positive linear systems: Theory and applications, Wiley, New York 2000.MATHGoogle Scholar
  8. 8.
    M.S. Gowda and T. Parthasarathy, Complementarity forms of theorems of Lyapunov and Stein, and related results, Linear Algebra and its Applications, 320 (2000) 131–144.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    M.S. Gowda and Y. Song, Some new results for the semidefinite linear complementarity problems, SIAM Journal on Matrix Analysis, 24 (2002) 25–39.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    M.S. Gowda and R. Sznajder, The generalized order linear complementarity problem, SIAM Journal on Matrix Analysis, 15 (1994) 779–795.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    M.S. Gowda, R. Sznajder, and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra and its Applications, 393 (2004) 203–232.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    M.S. Gowda and J. Tao, Z-transformations on proper and symmetric cones, Mathematical Programming, Series B, 117 (2009) 195–221.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    L Gurvits, R. Shorten, and O. Mason, On the stability of switched positive linear systems, IEEE Transactions on Automatic Control, 52 (2007) 1099–1103.MathSciNetCrossRefGoogle Scholar
  14. 14.
    V.A. Kamenetskiy and Ye.S. Pyatnitskiy, An iterative method of Lyapunov function construction for differential inclusions, Systems and Control Letters, 8 (1987) 445–451.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    C. King and M. Nathanson, On the existence of a common quadratic Lyapunov function for a rank one difference, Linear Algebra and its Applications, 419 (2006) 400–416.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Liberzon, Switching in systems and control, Birkhäuser, Boston, 2003.MATHGoogle Scholar
  17. 17.
    D. Liberzon, J.P. Hespanha, and A.S. Morse, Stability of switched systems: a Lie-algebraic condition, Systems and Control Letters, 37 (1999) 117–122.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Mason and R. Shorten, A conjecture on the existence of common quadratic Lyapunov functions for positive linear systems, Proceedings of American Control Conference, 2003.Google Scholar
  19. 19.
    M. Mason and R. Shorten, On common quadratic Lyapunov functions for stable discrete-time LTI systems, IMA Journal of Applied Mathematics, 69 (2004) 271–283.MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Mason and R. Shorten, On linear copositive Lyapunov functions and the stability of positive switched linear systems, IEEE Transactions on Automatic Control, 52 (2007) 1346–1349.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Y. Mori, T. Mori, and Y. Kuroe, A solution to the common Lyapunov function problem for continuous-time systems, Decision and Control, 4 (1997) 3530–3531.Google Scholar
  22. 22.
    K.S. Narendra and J. Balakrishnan, A common Lyapunov function for stable LTI systems with commuting A-matrices, Automatic Control, IEEE Transactions, 39 (1994) 2469–2471.MATHMathSciNetGoogle Scholar
  23. 23.
    H. Schneider and M. Vidyasagar, Cross-positive matrices, SIAM Journal on Numerical Analysis, 7 (1970) 508–519.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Shorten, O. Mason, and C. King, An alternative proof of the Barker, Berman, Plemmons (BBP) result on diagonal stability and extensions, Linear Algebra and its Applications, 430 (2009) 34–40.MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    R.N. Shorten and K.S. Narendra, On the stability and existence of common Lyapunov functions for stable linear switching systems, Decision and Control, 4 (1998) 3723–3724.Google Scholar
  26. 26.
    R.N. Shorten and K.S. Narendra, Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for M stable second order linear time-invariant systems, American Control Conference, Chicago, 2000.Google Scholar
  27. 27.
    R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, Stability criteria for switched and hybrid systems, SIAM Review, 49 (2007) 545–592.MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Y. Song, M.S. Gowda, and G. Ravindran, On some properties of P-matrix sets, Linear Algebra and its Applications, 290 (1999) 237–246.MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Sznajder and M.S. Gowda, Generalizations of P 0- and P-properties; extended vertical and horizontal linear complementarity problems, Linear Algebra and its Applications, 223/224 (1995) 695–715.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mathematics & StatisticsUniversity of Maryland, Baltimore CountyBaltimoreUSA

Personalised recommendations