Channel Equalization Techniques for Wireless Communications Systems

  • Cristiano M. Panazio
  • Aline O. Neves
  • Renato R. Lopes
  • Joao M.T. Romano

In bandlimited, high data rate digital communication systems, equalizers are important devices. Their function is to restore the transmitted information, i.e., the information at the channel input, decreasing or eliminating channel interference. A large variety of techniques have been developed in the last 70 years, following the evolution of communication systems.


Multiple Input Multiple Output Less Mean Square Wireless Communication System Recursive Little Square Transmitted Symbol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    3GPP TR 25.996: Spatial channel model for multiple input multiple output (MIMO) simulations, available online at 3GPP (2003)
  2. 2.
    Alamouti, S.: A simple transmit diversity technique for wireless communications. IEEE Journal on, Selected Areas in Communications, 16(8), 1451–1458 (1998)CrossRefGoogle Scholar
  3. 3.
    Altekar, S., Beaulieu, N.: Upper bounds to the error probability of decision feedback equalization. IEEE Transactions on Information Theory, 39(1), 145–156 (1993)MATHCrossRefGoogle Scholar
  4. 4.
    Apolinário, Jr, J.A.: QRD-RLS Adaptive Filtering. 1st edn. Springer (2009)Google Scholar
  5. 5.
    Arnold, D.M., Loeliger, H.-A., Vontobel, P.O., Kavcic, A., Zeng, W.: Simultlaion-based computation of Information rates for channels with memory. IEE Transactions of Information Theory, 52(8), 3498–3508 (2006). DOI 10.1109/TIT.2006.878110Google Scholar
  6. 6.
    Ariyavisitakul, S., Li, Y.: Joint coding and decision feedback equalization for broadband wireless channels. IEEE Journal on Selected Areas in Communications, 16(9), 1670–1678 (1998)CrossRefGoogle Scholar
  7. 7.
    Ariyavisitakul, S., Winters, J., Lee, I.: Optimum space–time processors with dispersive interference: unified analysis and required filter span. IEEE Transactions on Communications, 47(7), 1073–1083 (1999)CrossRefGoogle Scholar
  8. 8.
    Austin, M.: Decision feedback equalization for digital communications over dispersive channels. MIT Research Laboratory of Electronics Technical Report (461) (1967)Google Scholar
  9. 9.
    Bahl, L., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for minimizing symbol error rate (corresp.). IEEE Transactions on Information Theory, 20(2), 284–287 (1974)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Barry, J.R., Messerschmitt, D.G., Lee, E.A.: Digital Communications, 3rd edn. Springer: New York (2003)Google Scholar
  11. 11.
    Beaulieu, N.: Bounds on variances of recovery times of decision feedback equalizers. IEEE Transactions on Information Theory, 46(6), 2249–2256 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Benvenist, A., Goursat, M., Ruget, G.: Robust identification of a nonminimum phase system: blind adjustment of a linear equalizer in data communications. IEEE Transactions on Automatic Control, AC-25(3), 385–399 (1980)CrossRefGoogle Scholar
  13. 13.
    Colavolpe, G., Ferrari, G., Raheli, R.: Reduced-state BCJR-type algorithms. IEEE Journal on Selected Areas in Communications, 19(5), 848–859 (2001)CrossRefGoogle Scholar
  14. 14.
    Dejonghe, A., Vandendorpe, L.: Turbo-equalization for multilevel modulation: an efficient low-complexity scheme. IEEE International Conference on Communications, ICC 2002 3, 1863–1867 (2002)CrossRefGoogle Scholar
  15. 15.
    Diniz, P.: Adaptive Filtering: Algorithms and Practical Implementation. Kluwer Academic Publishers: Dordrecht (1997)MATHGoogle Scholar
  16. 16.
    Fertonani, D., Barbieri, A., Colavolpe, G.: Reduced-complexity BCJR algorithm for turbo equalization. IEEE Transactions on Communications, 55(12), 2279–2287 (2007)CrossRefGoogle Scholar
  17. 17.
    Forney G., J.: Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory, 18(3), 363–378 (1972)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fujii, M.: Path diversity reception employing steering vector arrays and sequence estimation techniques for ISI channels. IEEE Journal on Selected Areas in Communications, 17(10), 1735–1746 (1999)CrossRefGoogle Scholar
  19. 19.
    Gerstacker, W., Schober, R.: Equalization concepts for EDGE. IEEE Transactions on Wireless Communications, 1(1), 190–199 (2002)CrossRefGoogle Scholar
  20. 20.
    Gesbert, D., Shafi, M., Shan Shiu, D., Smith, P., Naguib, A.: From theory to practice: an overview of MIMO space–time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302 (2003)CrossRefGoogle Scholar
  21. 21.
    Godard, D.: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications, 28(11), 1867–1875 (1980)CrossRefGoogle Scholar
  22. 22.
    Hanaki, A., Ohgane, T., Ogawa, Y.: A novel cost function for cascaded connection of adaptive array and MLSE. IEEE VTS 50th Vehicular Technology Conference, 1999. VTC 1999 - Fall, vol. 1, 6–10 (1999)Google Scholar
  23. 23.
    Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall: Englewood Cliffs, NJ (1996)Google Scholar
  24. 24.
    Kennedy, R.A., Anderson, B.D.O.: Recovery times of decision feedback equalizers on noiseless channels. IEEE Transactions on Communications, 35, 1012–1021 (1987)CrossRefGoogle Scholar
  25. 25.
    Kennedy, R.A., Anderson, B.D.O., Bitmead, R.R.: Tight bounds on the error probabilities of decision feedback equalizers. IEEE Transactions on Communications, 35, 1022–1029 (1987)CrossRefGoogle Scholar
  26. 26.
    Leou, M.L., Yeh, C.C., Li, H.J.: A novel hybrid of adaptive array and equalizer for mobile communications. IEEE Transactions on Vehicular Technology, 49(1), 1–10 (2000)CrossRefGoogle Scholar
  27. 27.
    Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice Hall: Englewood Cliffs, NJ (2004)Google Scholar
  28. 28.
    Liu, J.T., Gelfand, S.: Optimized decision-feedback equalization for convolutional coding with reduced delay. IEEE Transactions on Communications, 53(11), 1859–1866 (2005)CrossRefGoogle Scholar
  29. 29.
    Ljung, L., Gunnarsson, S.: Adaptation and tracking in system identification—a survey. Automatica 26(1), 7–21 (1990)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Lopes, R., Barry, J.R.: Soft-output decision-feedback equalization with a priori information. IEEE Global Telecommunications Conference, 2003. GLOBECOM ’03, vol. 3, 1705–1709 (2003)Google Scholar
  31. 31.
    Lopes, R., Barry, J.R.: The soft-feedback equalizer for turbo equalization of highly dispersive channels. IEEE Transactions on Communications 54(5), 783–788 (2006)CrossRefGoogle Scholar
  32. 32.
    Lucky, R., Salz, J., Weldon, E.: Principles of Data Communication. McGraw-Hill: Nova York (1968)Google Scholar
  33. 33.
    Nikias, C., Petropulu, A.: Higher-order Spectra Analysis: A Nonlinear Signal Processing Framework. Prentice Hall: Englewood Cliffs, NJ (1993)MATHGoogle Scholar
  34. 34.
    Paulraj, A., Papadias, C.: Space–time processing for wireless communications. IEEE Signal Processing Magazine, 14(6), 49–83 (1997)CrossRefGoogle Scholar
  35. 35.
    Pipon, F., Chevalier, P., Vila, P., Monot, J.J.: Joint spatial and temporal equalization for channels with ISI and CCI-theoretical and experimental results for a base station reception. 1997 First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, 309–312 (1997)Google Scholar
  36. 36.
    Poor, H.V., Verdu, S.: Probability of error in MMSE multiuser detection. IEEE Transactions on Information Theory, 43(3), 858–871 (1997)MATHCrossRefGoogle Scholar
  37. 37.
    Proakis, J.: Digital Communications, 4th edn. McGraw-Hill: New York (2001)Google Scholar
  38. 38.
    Regalia, P.A.: Adaptive IIR filtering in signal processing and control. Marcel Dekker: New York (1995)MATHGoogle Scholar
  39. 39.
    Reynolds, D., Wang, X.: Low-complexity turbo-equalization for diversity channels. IEEE Transactions on Communications, 81(5), 989–995 (2001)MATHGoogle Scholar
  40. 40.
    Rusek, F., Loncar, M., Prlja, A.: A comparison of Ungerboeck and Forney models for reduced-complexity ISI equalization. IEEE Global Telecommunications Conference, GLOBECOM ’07, 1431–1436 (2007)Google Scholar
  41. 41.
    Shalvi, O., Weinstein, E.: New criteria for blind deconvolution of nonminimum phase systems (channels). IEEE Transactions on Information Theory, 36(2), 312–321 (1990)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Shalvi, O., Weinstein, E.: Blind Deconvolution, chap. Universal Methods for Blind Deconvolution. Prentice Hall: Englewood Cliffs, NJ (1994)Google Scholar
  43. 43.
    Shynk, J.: Adaptive IIR filtering. IEEE ASSP Magazine, 6(2), 4–21 (1989)CrossRefGoogle Scholar
  44. 44.
    Sklar, B.: How I learned to love the trellis. IEEE Signal Processing Magazine, 20(3), 87–102 (2003)CrossRefGoogle Scholar
  45. 45.
    Tomisato, S., Matsumoto, T.: A joint spatial and temporal equalizer using separated spatial and temporal signal processing for broadband mobile radio communications. IEEE Third Workshop on Signal Processing Advances in Wireless Communications, 2001 (SPAWC ’01), 298–301 (2001)Google Scholar
  46. 46.
    Tuchler, M., Koetter, R., Singer, A.: Turbo equalization: principles and new results. IEEE Transactions on Communications, 50(5), 754–767 (2002)CrossRefGoogle Scholar
  47. 47.
    Tuchler, M., Singer, A., Koetter, R.: Minimum mean squared error equalization using a priori information. IEEE Transactions on Signal Processing, 50(3), 673–683 (2002)CrossRefGoogle Scholar
  48. 48.
    Ungerboeck, G.: Adaptive maximum-likelihood receiver for carrier-modulated data-transmission systems. IEEE Transactions on Communications, 22(5), 624–636 (1974)CrossRefGoogle Scholar
  49. 49.
    Wang, X., Poor, H.: Iterative (turbo) soft interference cancellation and decoding for coded CDMA. IEEE Transactions on Communications 47(7), 1046–1061 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Cristiano M. Panazio
    • 1
  • Aline O. Neves
    • 2
  • Renato R. Lopes
    • 3
  • Joao M.T. Romano
    • 4
  1. 1.Department of Telecommunications and Control, USPLaboratory of Communications and SignalsSão PauloBrazil
  2. 2.Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABCSanto AndréBrazil
  3. 3.Department of CommunicationsSchool of Electrical and Computer Engineering, UNICAMPCampinasBrazil
  4. 4.Department of Microwaves and OpticsSchool of Electrical and Computer Engineering, UNICAMPCampinasBrazil

Personalised recommendations