Strategies for Link-Level Performance Assessment in the Simulation of Wireless Systems

  • Elvis M.G. Stancanelli
  • Carlos H.M. de Lima
  • Darlan C. Moreira

Performance assessment of wireless communication systems by computer simulations is a valuable and widely adopted tool for research and development, as well as in planning and deployment phases of these systems. It allows the numerical evaluation of a model of the wireless communication system of interest, while featuring speed, inexpensiveness, and flexibility to control the experiments. However, the high number of functionalities to be modeled in typical wireless setups makes a single simulator unfeasible. It is usual to break the system into modules, or layers, of reduced dimensionality. A simulation of the whole system can then be achieved by constructing all necessary modules and inter-connecting them via appropriate interfaces. This chapter describes a two-level organization of the system’s functionalities as the simulator is split into system- and link-level modules.


Orthogonal Frequency Division Multiplex User Equipment Data Block Turbo Code Maximal Ratio Combine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    3GPP: Channel coding. Technical report, TS 45.003 v6.6.0 – Release 6 (2004)Google Scholar
  2. 2.
    3GPP: Multiplexing and multiple access on the radio path. Technical report, TS 45.002 v6.7.0 – Release 6 (2004)Google Scholar
  3. 3.
    3GPP: Multiplexing and channel coding (FDD). Technical Report, TS 25.212 v5.10.0 – Release 5, 3rd Generation Partnership Project, Sophia Antipolis, France (2005). urlprefixurl
  4. 4.
    3GPP: Physical channels and mapping of transport channels onto physical channels (FDD). Technical Report, TS 25.211 v5.8.0 – Release 5, 3rd Generation Partnership Project, Sophia Antipolis, France (2005). urlprefixurl
  5. 5.
    3GPP: Physical layer procedures (FDD). Technical Report, TS 25.214 v5.11.0 – Release 5, 3rd Generation Partnership Project, Sophia Antipolis, France (2005). urlprefixurl
  6. 6.
    3GPP: Spreading and modulation (FDD). Technical Report, TS 25.213 v5.6.0 – Release 5, 3rd Generation Partnership Project, Sophia Antipolis, France (2005). urlprefixurl
  7. 7.
    3GPP: User equipment (UE) radio transmission and reception. Technical Report, TS 36.101 v8.3.0 – Release 8, 3rd Generation Partnership Project, Sophia Antipolis, France (2008). urlprefixurl
  8. 8.
    Awoniyi, O., Mehta, N., Greenstein, L.: Characterizing the orthogonality factor in WCDMA downlinks. IEEE Transactions on Wireless Communications 2(4), 621–625 (2003)CrossRefGoogle Scholar
  9. 9.
    Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: turbo-codes. IEEE Transactions on Communications 44(10), 1261–1271 (1996)CrossRefGoogle Scholar
  10. 10.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: turbo-codes. IEEE International Conference on Communications 2, 1064–1070 (1993)Google Scholar
  11. 11.
    Brueninghaus, K., Astély, D., Sälzer, T., Visuri, S., Alexiou, A., Karger, S., Seraji, G.A.: Link performance models for system level simulations of broadband radio access systems. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 4, 2306–2311 (2005)CrossRefGoogle Scholar
  12. 12.
    Cain, J.B., Clark, G.C., Geist, J.M.: Punctured convolutional codes of rate (n-1)/n and simplified maximum likelihood decoding. IEEE Transactions on Information Theory IT-25(1), 97–100 (1979)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Chen, X., Wan, L., Gao, Z., Fei, Z., Kuang, J.: The application of EESM and MI-based link quality models for rate compatible LDPC codes. In: IEEE Vehicular Technology Conference, pp. 1288–1292 (2007)Google Scholar
  14. 14.
    DaSilva, V., Sousa, E., Jovanovi’c, V.: Performance of the forward link of a CDMA cellular network. In: IEEE International Symposium on Spread Spectrum Techniques and Applications pp. 213–217 (1994)Google Scholar
  15. 15.
    Droste, H., Beyer, H.: Distributions of orthogonality factor and multipath gain of the UMTS downlink obtained by measurement based simulations. IEEE Vehicular Technology Conference 1, 411–415 (2005)Google Scholar
  16. 16.
    Free Software Foundation: IT++ – Scientific Library (2001). urlprefixurl Accessed on August 17, 2008
  17. 17.
    Furuskär, A.: Radio resource sharing and bearer service allocation for multi-bearer service, multi-access wireless networks – methods to improve capacity. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden (2003)Google Scholar
  18. 18.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable object-oriented software, 1st edn. Addison-Wesley Professional (1995)Google Scholar
  19. 19.
    He, X., Niu, K., He, Z., Lin, J.: Link layer abstraction in MIMO-OFDM system. In: International Workshop on Cross Layer Design, pp. 41–44 (2007)Google Scholar
  20. 20.
    Holma, H.: A study of UMTS terrestrial radio access performance. Ph.D. thesis, Helsinki University of Technology, Espoo, Finland (2003)Google Scholar
  21. 21.
    Holma, H., Toskala, A. (eds.): WCDMA for UMTS: radio access for third generation mobile communications, 3rd edn. Wiley (2004)Google Scholar
  22. 22.
    Hunukumbure, M., Beach, M., Allen, B.: Downlink orthogonality factor in UTRA FDD systems. Electronics Letters 38(4), 196–197 (2002)CrossRefGoogle Scholar
  23. 23.
    Huy, D., Legouable, R., Kténas, D., Brunel, L., Assaad, M.: Downlink B3G MIMO OFDMA link and system level performance. In: IEEE Vehicular Technology Conference pp. 1975–1979 (2008)Google Scholar
  24. 24.
    Jakes, W.C.: Mobile microwave communication. Wiley, New York (1974)Google Scholar
  25. 25.
    Jeruchim, M.: Techniques for estimating the bit error rate in the simulation of digital communication systems. IEEE Journal on Selected Areas in Communications 2(1), 153–170 (1984)CrossRefGoogle Scholar
  26. 26.
    Jeruchim, M.C., Balaban, P., Shanmugan, K.S.: Simulation of communication systems: modeling, methodology and techniques, 1st edn. Kluwer Academic (2000)Google Scholar
  27. 27.
    Korhonen, J.: Introduction to 3G mobile communications, 2nd edn. Artech House, Inc., Norwood, MA, USA (2003)Google Scholar
  28. 28.
    Laiho, J., Wacker, A., Novosad, T.: Radio network planning and optimisation for UMTS, 1st edn. Wiley (2002)Google Scholar
  29. 29.
    Li, Y., Huang, X.: The simulation of independent Rayleigh faders. IEEE Transactions on Communications 50(9), 1503–1514 (2002)CrossRefGoogle Scholar
  30. 30.
    Malkamäki, E., de Ryck, F., Mourot, C., Urie, A.: A method for combining radio link simulations and system simulations for a slow frequency hopped cellular system. IEEE Vehicular Technology Conference 2, 1145–1149 (1994)Google Scholar
  31. 31.
    Mehta, N.B., Greenstein, L.J., Willis, T.M., Kostic, Z.: Analysis and results for the orthogonality factor in WCDMA downlinks. IEEE Transactions on Wireless Communications 2(6) (2003)Google Scholar
  32. 32.
    Mehta, N., Molisch, A., Greenstein, L.: Orthogonality factor in WCDMA downlinks in urban macrocellular environments. In: IEEE Global Communications Conference 6 (2005)Google Scholar
  33. 33.
    Meszaros, G.: xUnit test patterns: refactoring test code, 1st edn. Addison-Wesley Signature Series. Addison-Wesley (2007)Google Scholar
  34. 34.
    Morrow, R.K., Lehnert, J.S.: Bit-to-bit error dependence in slotted DS/SSMA packet systems with random signature sequences. 37(10), 1052 – 1061 (1989)Google Scholar
  35. 35.
    Olofsson, H., Almgren, M., Johansson, C., Höök, M., öKronestedt, F.: Improved interface between link level and system level simulations applied to GSM. IEEE 6th International Conference on Universal Personal Communications 1, 79–83 (1997)CrossRefGoogle Scholar
  36. 36.
    Parkvall, S., Englund, E., Malm, P., Hedberg, T., Persson, M., Peisa, J.: WCDMA evolved-high speed packet data services. Ericsson Review 2, 56–65 (2003)Google Scholar
  37. 37.
    Passerini, C., Falciasecca, G.: Modeling of orthogonality factor using ray-tracing predictions. IEEE Transactions on Wireless Communications 3(6), 2051–2059 (2004)CrossRefGoogle Scholar
  38. 38.
    Passerini, C., Falciasecca, G., Bordoni, F.: Correlation between delay-spread and orthogonality factor in urban environments. Electronics Letters 37(6), 384–386 (2001)CrossRefGoogle Scholar
  39. 39.
    Pedersen, K., Mogensen, P.: The downlink orthogonality factors influence on WCDMA system performance. IEEE Vehicular Technology Conference 4 (2002)Google Scholar
  40. 40.
    Proakis, J.G.: Digital communications, 3rd edn. McGraw-Hill, USA (1995)Google Scholar
  41. 41.
    Pursley, M.B.: Performance evaluation for phase-coded spread-spectrum multiple-access communication – Part I: System analysis. IEEE Transactions on Communications COM-25(8), 795–799 (1977)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Robertson, P., Villebrun, E., Hoeher, P.: A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. IEEE International Conference on Communications 02 (1995)Google Scholar
  43. 43.
    Seeger, A., Sikora, M., Klein, A.: Variable orthogonality factor: a simple interface between link and system level simulation for high speed downlink packet access. IEEE Vehicular Technology Conference 4 (2003)Google Scholar
  44. 44.
    Sipila, K., Honkasalo, K., Laiho-Steffens, J., Wacker, A.: Estimation of capacity and required transmission power of WCDMA downlink based on a downlink pole equation. IEEE Vehicular Technology Conference 2, 1002–1005 (2000)Google Scholar
  45. 45.
    Sklar, B.: A primer on turbo code concepts. IEEE Communications Magazine 35(12), 94–102 (1997)CrossRefGoogle Scholar
  46. 46.
    Sklar, B.: Rayleigh fading channels in mobile digital communication systems. I. Characterization. IEEE Communications Magazine 35(7), 90–100 (1997)CrossRefGoogle Scholar
  47. 47.
    Sklar, B.: Rayleigh fading channels in mobile digital communication systems. II. Mitigation. IEEE Communications Magazine 35(7), 102–109 (1997)CrossRefGoogle Scholar
  48. 48.
    Sklar, B.: Digital communications, 2nd edn. Prentice-Hall, USA (2001)Google Scholar
  49. 49.
    Sklar, B.: How I learned to love the trellis. IEEE Signal Processing Magazine 20(3), 87–102 (2003)CrossRefGoogle Scholar
  50. 50.
    Smith, J.I.: A computer generating multipath fading simulation for mobile radio. IEEE Transactions on Vehicular Technology 24(3), 39–40 (1975)CrossRefGoogle Scholar
  51. 51.
    Sohn, I., Bang, S.C.: Performance studies of rate matching for WCDMA mobile receiver. In: IEEE VTC-Fall Vehicular Technology Conference, vol. 6, pp. 2661–2665 (2000)Google Scholar
  52. 52.
    Stroustrup, B.: The C++ programming language – special edition, 3rd edn. Addison-Wesley Professional (2000)Google Scholar
  53. 53.
    Tsai, S.S., Soong, A.C.K.: Effective-SNR mapping for modeling frame error rates in multiple-state channels. Tech. Rep. 3GPP2-C30-20030429-010, 3rd Generation Partnership Project 2 (2003). urlprefixurl
  54. 54.
    Tuomaala, E., Wang, H.: Effective SINR approach of link to system mapping in OFDM/multi-carrier mobile network. 2nd International Conference on Mobile Technology, Applications and Systems 2 (2005)Google Scholar
  55. 55.
    UMTS: Selection procedures for the choice of radio transmission technologies of the UMTS. Technical Report, UMTS TR 101.112 v.3.2.0, ETSI (1998)Google Scholar
  56. 56.
    Verdú, S.: Multiuser detection. Cambridge University Press, USA (1998)MATHGoogle Scholar
  57. 57.
    Wan, L., Tsai, S., Almgren, M.: A fading-insensitive performance metric for a unified link to system quality model. In: WCNC2006, Las Vegas, USA (2006)Google Scholar
  58. 58.
    Westman, E.: Calibration and evaluation of the exponential effective SINR mapping (EESM) in 802.16. Master’s thesis, Royal Institute of Technology, Stockholm, Sweden (2006)Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Elvis M.G. Stancanelli
    • 1
  • Carlos H.M. de Lima
    • 2
  • Darlan C. Moreira
    • 1
  1. 1.Wireless Telecom Research Group (GTEL)CEBrazil
  2. 2.Centre for Wireless Communications University of OuluOuluFinland

Personalised recommendations