Advertisement

Power Control for Wireless Networks: Conventional and QoS-Flexible Approaches

  • Fabiano S. de Chaves
  • Francisco R.P. Cavalcanti
  • Raimundo A. de Oliveira Neto
  • Ricardo B. Santos
Chapter

Power control is an important functionality in radio resource management (RRM) of wireless communication systems, especially the cellular ones. This importance comes from the fact that the transmission power is an essential radio resource and must be employed in an efficient way. Power control techniques must attain two different objectives: minimize the interference in the wireless system and save energy.

Keywords

Nash Equilibrium Power Control Channel Gain Radio Resource Management Power Control Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpcan, T., Basar, T., Srikant, R.: CDMA uplink power control as a noncooperative game. Wireless Networks 8, 659–670 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Altman, E., Altman, Z.: S-modular games and power control in wireless networks. IEEE Transactions on Automatic Control 48(5), 839–842 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. SIAM (1998)Google Scholar
  4. 4.
    Chiller, J.: Mobile Communications. Addison-Wesley (2000)Google Scholar
  5. 5.
    Damosso, E.: Digital Mobile Radio Towards Future Generation Systems. European Commission (1999)Google Scholar
  6. 6.
    Debreu, G.: A social equilibrium existence theorem. Proceedings of National Academy of Science 38, 886–893 (1952)Google Scholar
  7. 7.
    Fan, F.: Fixed point and minima theorems in locally convex topological linear spaces. Proceedings of National Academy of Science 38, 121–126 (1952)Google Scholar
  8. 8.
    Fitzek, F.H.P., Katz, M.D.: Cognitive Wireless Networks: Concepts, Methodologies and Visions Inspiring the Age of Enlightenment of Wireless Communications. Springer (2007)Google Scholar
  9. 9.
    Foschini, G.J., Miljanic, Z.: A simple distributed autonomous power control algorithm and its convergence. IEEE Transactions on Vehicular Technology 42(4), 641–646 (1993)CrossRefGoogle Scholar
  10. 10.
    Fudenberg, D. Tirole, J.: Game Theory. MIT Press (1991)Google Scholar
  11. 11.
    Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing (1960)Google Scholar
  12. 12.
    Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points. Proceedings of American Mathematics Society 3, 170–174 (1952)Google Scholar
  13. 13.
    Goldsmith, A.J., Chua, S.G.: Adaptive coded modulation for fading channels. IEEE Transactions on Communications 46(5), 595–602 (1998)CrossRefGoogle Scholar
  14. 14.
    Gombachika, H.S.H., Tafazolli, R., Evans, B.G.: A comparative study of predictive transmit power schemes for S-UMTS. Wireless Networks 11, 215–222 (2005)CrossRefGoogle Scholar
  15. 15.
    Goodman, D., Mandayam, N.: Power control for wireless data. IEEE Personal Communications 7(2), 48–54 (2000)CrossRefGoogle Scholar
  16. 16.
    Grandhi, S.A., Vijayan, R., Goodman, D.J.: Distributed power control in cellular radio systems. IEEE Transactions on Communications 42(2–4), 226–228 (1994)CrossRefGoogle Scholar
  17. 17.
    Hanly, S., Tse, D.N.C.: Multi-access fading channels: Part II: Delay-limited capacities. IEEE Transactions on Information Theory 44(7), 2816–2831 (1998)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hassibi, B., Sayed, A.H., Kailath, T.: Indefinite-Quadratic Estimation and Control: A Unified Approach to H2 and H Theories. SIAM (1999)Google Scholar
  19. 19.
    Hata, M.: Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology 29(3), 317–325 (1980)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice Hall (2001)Google Scholar
  21. 21.
    Haykin, S.: Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23(2), 201–220 (2005)CrossRefGoogle Scholar
  22. 22.
    Holma, H., Toskala, A.: WCDMA for UMTS. Wiley (2004)Google Scholar
  23. 23.
    Jakes, W.C.: Microwave Mobile Communications, 2nd edn. Wiley (1974)Google Scholar
  24. 24.
    Lau, F.C.M., Tam, W.M.: Novel predictive power control in a CDMA mobile radio system. Proceedings of IEEE Vehicular Technology Conference 3, 1950–1954 (2000)Google Scholar
  25. 25.
    Lau, F.C.M., Tam, W.M.: Achievable-SIR-based predictive closed-loop power control in a CDMA mobile system. IEEE Transactions on Vehicular Technology 51(4), 720–728 (2002)CrossRefGoogle Scholar
  26. 26.
    Lee, T.H., Lin, J.C., Su, Y.T.: Downlink power control algorithms for cellular radio systems. IEEE Transactions on Vehicular Technology 44(1), 89–94 (1995)CrossRefGoogle Scholar
  27. 27.
    Leung, K.K.: Power control by interference prediction for broadband wireless packet networks. IEEE Transactions on Wireless Communications 1(2), 256–265 (2002)CrossRefGoogle Scholar
  28. 28.
    Leung, K.K., Sung, C.W.: An opportunistic power control algorithm for cellular network. IEEE Transactions on Networking 14(3), 470–478 (2006)CrossRefGoogle Scholar
  29. 29.
    Leung, K.K., Sung, C.W., Wong, W.S., Lok, T.M.: Convergence theorem for a general class of power control algorithms. IEEE Transactions on Communications 52(9), 1566–1574 (2004)CrossRefGoogle Scholar
  30. 30.
    Luce, R.D., Raiffa, H.: Games and Decisions. John Wiley & Sons (1957)Google Scholar
  31. 31.
    Nash, J.: Equilibrium points in N-person games. Proceedings of National Academy of Science 36, 48–49 (1950)Google Scholar
  32. 32.
    Nash, J.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Neumann, J.V.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior, 1st edn. Princeton University Press (1944)Google Scholar
  35. 35.
    Novakovic, D.M., Dukic, M.L.: Evolution of the power control techniques for DS-CDMA toward 3G wireless communication systems. IEEE Communications Surveys, pp. 2–15 (2000)Google Scholar
  36. 36.
    Okumura, T., Ohmori, E., Fukuda, K.: Field strength and its variability in VHF and UHF land mobile service. Review of the Electrical Communication Laboratory 16(9–10), 825–873 (1968)Google Scholar
  37. 37.
    de Oliveira Neto, R.A., de S. Chaves, F., Cavalcanti, F.R.P., Maciel, T.F.: A new distributed power control algorithm based on a simple prediction method. Lecture Notes in Computer Science 3124, 431–436 (2004)Google Scholar
  38. 38.
    de Oliveira Neto, R.A., de S. Chaves, F., Cavalcanti, F.R.P., Maciel, T.F.: New distributed power control algorithms for mobile communications. Journal of the Brazilian Telecommunications Society 20(2), 65–71 (2005)Google Scholar
  39. 39.
    Qian, L., Gajic, Z.: Variance minimization stochastic power control in CDMA systems. IEEE Transactions on Wireless Communications 5(1), 193–202 (2006)CrossRefGoogle Scholar
  40. 40.
    Rappaport, T.S.: Wireless Communications. Prentice-Hall (1996)Google Scholar
  41. 41.
    de S. Chaves, F., Cavalcanti, F.R.P., de Oliveira Neto, R.A., Santos, R.B.: Opportunistic distributed power control with adaptive QoS and fairness for wireless networks. Wireless Communications and Mobile Computing (accepted for publication) (2008)Google Scholar
  42. 42.
    de S. Chaves, F., Cavalcanti, F.R.P., Santos, R.B., de Oliveira Neto, R.A.: Opportunistic distributed power control with QoS guarantee in wireless communication systems. Proceedings of IEEE Workshop on Signal Processing Advances in Wireless Communications, pp. 1–5 (2007)Google Scholar
  43. 43.
    de S. Chaves, F., de Sousa Jr., V.A., de Oliveira Neto, R.A., de Lima, C.H.M., Cavalcanti, F.R.P.: Performance of energy efficient game theoretical-based power control algorithm in WCDMA. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1–5 (2006)Google Scholar
  44. 44.
    Saraydar, C.U., Mandayam, N.B., Goodman, D.J.: Efficient power control via pricing in wireless data networks. IEEE Transactions on Communications 50(2), 291–303 (2002)CrossRefGoogle Scholar
  45. 45.
    Shaked, U., Theodor, Y.: H-optimal estimation: A tutorial. Proceedings of IEEE Conference on Decision and Control 2, 2278–2286 (1992)Google Scholar
  46. 46.
    Shoarinejad, K., Speyer, J.L., Pottie, G.J.: Integrated predictive power control and dynamic channel assignment in mobile radio systems. IEEE Transactions on Wireless Communications 2(5), 976–988 (2003)CrossRefGoogle Scholar
  47. 47.
    Simon, D.: Optimal State Estimation: Kalman, H, and Nonlinear Approaches. John Wiley & Sons (2006)Google Scholar
  48. 48.
    Sorooshyari, S., Gajic, Z.: Autonomous dynamic power control for wireless networks: User-centric and network-centric consideration. IEEE Transactions on Wireless Communications 7(3), 1004–1015 (2008)CrossRefGoogle Scholar
  49. 49.
    Strang, G.: Linear Algebra and Its Applications. Harcourt (1988)Google Scholar
  50. 50.
    Subramanian, A., Sayed, A.H.: Joint rate and power control algorithm for wireless networks. IEEE Transactions on Signal Processing 53(11), 4204–4214 (2005)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Sung, C.W., Leung, K.K.: A generalized framework for distributed power control in wireless networks. IEEE Transactions on Information Theory 51(7), 2625–2635 (2005)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Topkis, D.M.: Supermodularity and Complementarity. Princeton University Press (1998)Google Scholar
  53. 53.
    Tse, D.N.C., Hanly, S.: Multi-access fading channels: Part I: Polymatroid structure, optimal resource allocation, and throughput capacities. IEEE Transactions on Information Theory 44(7), 2796–2815 (1998)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Virtej, I., Kansanen, O., Koivo, H.: Enhanced predictive fast power control for 3G systems. Proceedings of IEEE Vehicular Technology Conference 4, 2864–2868 (2001)Google Scholar
  55. 55.
    Walfisch, J., Benoni, H.L.: A theoretical model of UHF propagation in urban environments. IEEE Transactions on Antennas and Propagation 36(12), 1788–1796 (1988)CrossRefGoogle Scholar
  56. 56.
    Yacoub, M.D.: Fundamentals of Mobile Radio Engineering. CRC Press (1993)Google Scholar
  57. 57.
    Yacoub, M.D.: Wireless Technology: Protocols, Standards, and Techniques. CRC Press (2001)Google Scholar
  58. 58.
    Yates, R.D.: A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in Communications 13(7), 1341–1347 (1995)CrossRefMathSciNetGoogle Scholar
  59. 59.
    Yates, R.D., Gupta, S., Rose, C., Sohn, S.: Soft dropping power control. Proceedings of IEEE Vehicular Technology Conference 3, 1694–1698 (1997)Google Scholar
  60. 60.
    Zander, J.: Distributed cochannel interference control in cellular radio systems. IEEE Transactions on Vehicular Technology 41(3), 305–311 (1992)CrossRefGoogle Scholar
  61. 61.
    Zander, J.: Performance of optimum transmitter power control in cellular radio systems. IEEE Transactions on Vehicular Technology 41(1), 57–62 (1992)CrossRefGoogle Scholar
  62. 62.
    Zander, J., Kim, S.L.: Radio Resource Management for Wireless Networks. Artech House Publishers (2001)Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Fabiano S. de Chaves
    • 1
  • Francisco R.P. Cavalcanti
    • 2
  • Raimundo A. de Oliveira Neto
    • 2
  • Ricardo B. Santos
    • 2
  1. 1.Department of CommunicationsSchool of Electrical and Computer Engineering, University of Campinas – UNICAMPSão PauloBrazil
  2. 2.Wireless Telecom Research Group (GTEL)FortalezaBrazil

Personalised recommendations