Advertisement

Applications

  • Kurt E. Oughstun
Part of the Springer Series in Optical Sciences book series (SSOS, volume 144)

Abstract

Although the complete mathematical description of ultrawideband dispersive pulse propagation can be rather involved, its physical interpretation is really rather straightforward. Simply put, the input pulse spectrum is like a block of granite to a sculptor, the dispersive attenuative medium being the sculptor. Just as the sculptor never adds material to the block of granite, the material never adds spectral content to the pulse. Rather, it chips away at the spectral content, gradually shaping the pulse down to the precursor field structures that are a characteristic of the material dispersion (i.e., the temporal material response). The precursor fields are then already contained in the initial pulse. The more ultrawideband the pulse, the more they are completely present. Because the precursor fields are a characteristic of the dispersive material, they are precisely tuned to travel through that medium with minimal distortion and, most importantly, with minimal loss. This property makes them ideally suited for a variety of communication and imaging problems.

Keywords

Defense Advance Research Project Agency Defense Advance Research Project Agency Beam Field Fresnel Reflection Coefficient Incident Wave Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Fowler, J. Entzminger, and J. Corum, “Assessment of ultra-wideband (UWB) technology,” Tech. Rep. DTIC No. ADB146160, Battelle Columbus Labs., Columbus, OH, 1990. Executive summary published in IEEE AESS Magazine, vol. 5, no. 11, pp. 45–49, November, 1990.Google Scholar
  2. 2.
    C. A. Fowler, “The UWB (impulse radar) caper or ‘punishment of the innocent’,” Tech. Rep. DTIC No. ADB146160, Battelle Memorial Laboratory, Dayton, OH, 1992. Executive summary published in IEEE AESS Magazine, pp. 3–5, December, 1992.Google Scholar
  3. 3.
    H. D. Griffiths, C. J. Baker, A. Fernandez, J. B. Davies, and A. L. Cullen, “Use and application of precursor waveforms,” in 1 st EMRS DTC Technical Conference, (Edinburgh, UK), 2004.Google Scholar
  4. 4.
    P. D. Smith, Energy Dissipation of Pulsed Electromagnetic Fields in Causally Dispersive Dielectrics. PhD thesis, University of Vermont, 1995. Reprinted in UVM Research Report CSEE/95/07-02 (July 18, 1995).Google Scholar
  5. 5.
    P. D. Smith and K. E. Oughstun, “Electromagnetic energy dissipation of ultrawideband plane wave pulses in a causal, dispersive dielectric,” in Ultra-Wideband, Short-Pulse Electromagnetics 2 (L. Carin and L. B. Felsen, eds.), pp. 285–295, New York: Plenum Press, 1994.Google Scholar
  6. 6.
    P. D. Smith and K. E. Oughstun, “Electromagnetic energy dissipation and propagation of an ultrawideband plane wave pulse in a causally dispersive dielectric,” Rad. Sci., vol. 33, no. 6, pp. 1489–1504, 1998.ADSCrossRefGoogle Scholar
  7. 7.
    E. H. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Regularization and fast solution of large subwavelength problems with imperfectly conducting materials,” in 2007 IEEE Antennas & Propagation Soc. International Symposium, vol. 9, pp. 3456–3459, 2007.Google Scholar
  8. 8.
    K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer-Verlag, 1994.Google Scholar
  9. 9.
    K. E. Oughstun, “Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop., vol. 53, no. 5, pp. 1582–1590, 2005.MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    N. A. Cartwright and K. E. Oughstun, “Uniform asymptotics applied to ultrawideband pulse propagation,” SIAM Rev., vol. 49, no. 4, pp. 628–648, 2007.MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    J. H. Poynting, “Transfer of energy in the electromagnetic field,” Phil. Trans., vol. 175, pp. 343–xxx, 1884.Google Scholar
  12. 12.
    J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.MATHGoogle Scholar
  13. 13.
    R. S. Elliott, Electromagnetics: History, Theory, and Applications. Piscataway: IEEE Press, 1993.Google Scholar
  14. 14.
    J. D. Jackson, Classical Electrodynamics. New York: John Wiley & Sons, Inc., third ed., 1999.Google Scholar
  15. 15.
    Y. S. Barash and V. L. Ginzburg, “Expressions for the energy density and evolved heat in the electrodynamics of a dispersive and absorptive medium,” Usp. Fiz. Nauk., vol. 118, pp. 523–530, 1976. [English translation: Sov. Phys.-Usp. vol. 19, 163–270 (1976)].Google Scholar
  16. 16.
    H. A. Lorentz, The Theory of Electrons. Leipzig: Teubner, 1906. Chap. IV.Google Scholar
  17. 17.
    L. Rosenfeld, Theory of Electrons. Amsterdam: North-Holland, 1951.MATHGoogle Scholar
  18. 18.
    C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization: Volume II. Dielectrics in Time-Dependent Fields. Amsterdam: Elsevier, second ed., 1978.Google Scholar
  19. 19.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. New York: Wiley-Interscience, 1984. Chap. 9.Google Scholar
  20. 20.
    B. R. Horowitz and T. Tamir, “Unified theory of total reflection phenomena at a dielectric interface,” Appl. Phys., vol. 1, pp. 31–38, 1973.ADSCrossRefGoogle Scholar
  21. 21.
    C. C. Chen and T. Tamir, “Beam phenomena at and near critical incidence upon a dielectric interface,” J. Opt. Soc. Am. A, vol. 4, pp. 655–663, 1987.ADSCrossRefGoogle Scholar
  22. 22.
    E. Gitterman and M. Gitterman, “Transient processes for incidence of a light signal on a vacuum-medium interface,” Phys. Rev. A, vol. 13, pp. 763–776, 1976.ADSCrossRefGoogle Scholar
  23. 23.
    J. G. Blaschak and J. Franzen, “Precursor propagation in dispersive media from short-rise-time pulses at oblique incidence,” J. Opt. Soc. Am. A, vol. 12, no. 7, pp. 1501–1512, 1995.ADSCrossRefGoogle Scholar
  24. 24.
    J. A. Marozas, Angular Spectrum Representation of Ultrawideband Electromagnetic Pulse Propagation in Lossy, Dispersive Dielectric Slab Waveguides. PhD thesis, University of Vermont, 1997. Reprinted in UVM Research Report CSEE/97/11-01 (November 10, 1997).Google Scholar
  25. 25.
    J. A. Marozas and K. E. Oughstun, “Electromagnetic pulse propagation across a planar interface separating two lossy, dispersive dielectrics,” in Ultra-Wideband, Short-Pulse Electromagnetics 3 (C. Baum, L. Carin, and A. P. Stone, eds.), pp. 217–230, New York: Plenum Press, 1997.Google Scholar
  26. 26.
    M. Born and E. Wolf, Principles of Optics. Cambridge: Cambridge University Press, seventh (expanded) ed., 1999.Google Scholar
  27. 27.
    F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Physik, vol. 6, no. 1, pp. 333–345, 1947.ADSCrossRefGoogle Scholar
  28. 28.
    M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am., vol. 67, no. 1, pp. 103–107, 1977.ADSCrossRefGoogle Scholar
  29. 29.
    W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A, vol. 25, no. 4, pp. 2099–2101, 1982.ADSCrossRefGoogle Scholar
  30. 30.
    D. Marcuse, Theory of Dielectric Optical Waveguides. New York: Academic Press, 1974.Google Scholar
  31. 31.
    T. Tamir, ed., Integrated Optics. New York: Springer-Verlag, 1979.Google Scholar
  32. 32.
    M. N. Islam, Ultrafast Fiber Switching Devices and Systems. Cambridge: Cambridge University Press, 1992.Google Scholar
  33. 33.
    R. Y. Chiao and A. M. Steinberg, “Tunneling times and superluminality,” in Progress in Optics (E. Wolf, ed.), vol. XXXVII, pp. 345–405, Amsterdam: North-Holland, 1997.Google Scholar
  34. 34.
    W. R. Tinga and S. O. Nelson, “Dielectric properties of materials for microwave processing-tabulated,” J. Microwave Power, vol. 8, pp. 23–65, 1973.Google Scholar
  35. 35.
    C. Pearce, “The permittivity of two phase mixtures,” Brit. J. Appl. Phys., vol. 61, pp. 358–361, 1955.ADSCrossRefGoogle Scholar
  36. 36.
    A. K. Fung and F. T. Ulaby, “A scatter model of leafy vegetation,” IEEE Trans. Geosci. Electron., vol. 16, pp. 281–285, 1978.CrossRefGoogle Scholar
  37. 37.
    A. von Hippel, “Tables of dielectric materials,” Tech. Rep. ONR Contract N5ori-78 T. O. 1, Laboratory for Insulation Research, Mass. Inst. Tech., 1948.Google Scholar
  38. 38.
    S. Dvorak and D. Dudley, “Propagation of ultra-wide-band electromagnetic pulses through dispersive media,” IEEE Trans. Elec. Comp., vol. 37, no. 2, pp. 192–200, 1995.CrossRefGoogle Scholar
  39. 39.
    S. L. Dvorak, “Exact, closed-form expressions for transient fields in homogeneously filled waveguides,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2164–2170, 1994.MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    C. M. Knop, “Pulsed electromagnetic wave propagation in dispersive media,” IEEE Trans. Antennas Prop., vol. 12, pp. 494–496, 1964.ADSCrossRefGoogle Scholar
  41. 41.
    J. R. Wait, “Propagation of pulses in dispersive media,” Radio Sci., vol. 69D, pp. 1387–1401, 1965.Google Scholar
  42. 42.
    C. T. Case and R. E. Haskell, “On pulsed electromagnetic wave propagation in dispersive media,” IEEE Trans. Antennas Prop., vol. 14, p. 401, 1966.Google Scholar
  43. 43.
    M. Wu, R. G. Olsen, and S. W. Plate, “Wideband approximate solutions for the Sommerfeld integrals arising in the wire over earth problem,” J. Electromagne. Waves Applic., vol. 4, pp. 479–504, 1990.Google Scholar
  44. 44.
    M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, vol. 55 of Applied Mathematics Series. Washington, D.C.: National Bureau of Standards, 1964.Google Scholar
  45. 45.
    S. L. Dvorak and E. F. Kuester, “Numerical computation of the incomplete Lipschitz-Hankel integral Je 0(a, z),” J. Comput. Phys., vol. 87, pp. 301–327, 1990.MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    S. L. Dvorak, “Applications for incomplete Lipschitz-Hankel integrals in electromagnetics,” IEEE Antennas Prop. Mag., vol. 36, pp. 26–32, 1994.ADSCrossRefGoogle Scholar
  47. 47.
    C. D. Taylor and D. V. Giri, High-Power Microwave Systems and Effects. Washington, DC: Taylor & Francis, 1994. Ch. 6.Google Scholar
  48. 48.
    R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” Phys. A, vol. 3, pp. 233–245, 1970.ADSCrossRefGoogle Scholar
  49. 49.
    K. E. Oughstun and S. Shen, “Velocity of energy transport for a time-harmonic field in a multiple-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 5, no. 11, pp. 2395–2398, 1988.ADSCrossRefGoogle Scholar
  50. 50.
    L. J. Ravitz, “History, measurement, and applicability of periodic changes in the electromagnetic field in health and disease,” Ann. NY Acad. Sci., vol. 98, pp. 1144–1201, 1962.CrossRefGoogle Scholar
  51. 51.
    T. Kotnik and D. Miklavcic, “Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields,” Biophys. J., vol. 90, pp. 480–491, 2006.ADSCrossRefGoogle Scholar
  52. 52.
    Neumann, Sowers, and Jordan, Electroporation and Electrofusion in Cell Biology. New York: Plenum, 1989.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kurt E. Oughstun
    • 1
  1. 1.College of Engineering & Mathematical Sciences School of EngineeringUniversity of VermontBurlingtonUSA

Personalised recommendations