Skip to main content

Physical Interpretations of Dispersive Pulse Dynamics

  • Chapter
Electromagnetic and Optical Pulse Propagation 2

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 144))

  • 1006 Accesses

Abstract

The causally interrelated effects of phase dispersion and absorption on the evolution of an electromagnetic pulse as it propagates through a homogeneous linear dielectric, particularly when the pulse is ultrawideband, developed originally by Sommerfeld [1] and Brillouin [2, 3, 4] in 1914 in support of Einstein’s 1905 special theory of relativity [5], Brillouin’s signal velocity description partially corrected by Baerwald [6] in 1930, and the theory finally completed in the 1970–1980’s by Oughstun [7] and Sherman [8, 9, 10, 11, 12] in a series of papers that forms the basis of the modern asymptotic theory have been described in detail in Chaps. 12–15 of this volume. The results show that after the pulse has propagated sufficiently far in the medium, its spatiotemporal dynamics settle into a relatively simple regime, known as the mature dispersion regime, for the remainder of the propagation. In this regime, the wavefield becomes locally quasimonochromatic with fixed local frequency and wavenumber in small regions of space–time which move with their own characteristic constant velocity. The theory provides accurate but approximate analytic expressions for the local wave properties at any given space–time point in the mature dispersion regime. The expressions are complicated, however, as is their derivation from a well-defined asymptotic theory (presented in Chap. 10), and neither do the results nor their derivations provide complete insight into the physical reasons for the wavefield having the particular local space–time properties it does have in the various subregions of space moving with specific velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Remember that an ultrashort pulse is also ultrawideband, but that an ultrawideband signal need not be ultrashort.

  2. 2.

    Notice that the variable notation ω = {ω} and ω = {ω} is still used here.

  3. 3.

    The numerical algorithm used to evaluate the integral representation of the propagated pulse wavefield for this and subsequent examples in this section is described in [22]. As discussed in that reference, the algorithm begins to produce numerical artifacts in the results as θ approaches 1 from above for the delta function pulse. This is a consequence of the fact that the integral itself is ill behaved at θ = 1 (see Sect. 13.2.5).

  4. 4.

    Notice that Stratton’s analysis is based on the Laplace transform with integration variable \(s = -\mathit{i}\omega \).

References

  1. A. Sommerfeld, “Über die fortpflanzung des lichtes in disperdierenden medien,” Ann. Phys., vol. 44, pp. 177–202, 1914.

    Article  Google Scholar 

  2. L. Brillouin, “Über die fortpflanzung des licht in disperdierenden medien,” Ann. Phys., vol. 44, pp. 204–240, 1914.

    Google Scholar 

  3. L. Brillouin, “Propagation of electromagnetic waves in material media,” in Congrès International d’Electricité, vol. 2, pp. 739–788, Paris: Gauthier-Villars, 1933.

    Google Scholar 

  4. L. Brillouin, Wave Propagation and Group Velocity. New York: Academic, 1960.

    MATH  Google Scholar 

  5. A. Einstein, “Zur elektrodynamik bewegter körper,” Ann. Phys., vol. 17, pp. 891–921, 1905.

    Article  MATH  Google Scholar 

  6. H. Baerwald, “Über die fortpflanzung von signalen in disperdierenden medien,” Ann. Phys., vol. 7, pp. 731–760, 1930.

    Article  Google Scholar 

  7. K. E. Oughstun, Propagation of Optical Pulses in Dispersive Media. PhD thesis, The Institute of Optics, University of Rochester, 1978.

    Google Scholar 

  8. K. E. Oughstun and G. C. Sherman, “Optical pulse propagation in temporally dispersive Lorentz media,” J. Opt. Soc. Am., vol. 65, no. 10, p. 1224A, 1975.

    Google Scholar 

  9. K. E. Oughstun and G. C. Sherman, “Uniform asymptotic theory of pulse propagation in Lorentz media,” in Proceedings of the URSI Symposium on Electromagnetic Wave Theory, (Stanford University), pp. 34–36, 1977.

    Google Scholar 

  10. K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 69, no. 10, p. 1448A, 1979.

    Google Scholar 

  11. K. E. Oughstun and S. Shen, “Velocity of energy transport for a time-harmonic field in a multiple-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 5, no. 11, pp. 2395–2398, 1988.

    Article  ADS  Google Scholar 

  12. K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1394–1420, 1989.

    Article  MathSciNet  ADS  Google Scholar 

  13. I. Tolstoy, Wave Propagation. New York: McGraw-Hill, 1973. Chaps. 1 and 2.

    Google Scholar 

  14. L. A. Segel and G. H. Handelsman, Mathematics Applied to Continuum Mechanics. New York: Macmillan, 1977. Chap. 9.

    Google Scholar 

  15. B. R. Baldock and T. Bridgeman, Mathematical Theory of Wave Motion. New York: Halsted, 1981. Chap. 5.

    Google Scholar 

  16. L. B. Felsen, “Propagation and diffraction of transient fields in non-dispersive and dispersive media,” in Transient Electromagnetic Fields (L. B. Felsen, ed.), pp. 1–72, New York: Springer-Verlag, 1976. p. 65.

    Google Scholar 

  17. H. M. Nussenzveig, Causality and Dispersion Relations. New York: Academic, 1972. Chap. 1.

    Google Scholar 

  18. K. E. Oughstun and H. Xiao, “Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive, attenuative medium,” Phys. Rev. Lett., vol. 78, no. 4, pp. 642–645, 1997.

    Article  ADS  Google Scholar 

  19. H. Xiao and K. E. Oughstun, “Failure of the group velocity description for ultrawideband pulse propagation in a double resonance Lorentz model dielectric,” J. Opt. Soc. Am. B, vol. 16, no. 10, pp. 1773–1785, 1999.

    Article  ADS  Google Scholar 

  20. K. E. Oughstun and G. C. Sherman, “Comparison of the signal velocity of a pulse with the energy velocity of a time-harmonic field in Lorentz media,” in Proceedings of the URSI Symposium on Electromagnetic Wave Theory, (München), pp. C1–C5, 1980.

    Google Scholar 

  21. G. C. Sherman and K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett., vol. 47, pp. 1451–1454, 1981.

    Article  ADS  Google Scholar 

  22. G. C. Sherman and K. E. Oughstun, “Energy velocity description of pulse propagation in absorbing, dispersive dielectrics,” J. Opt. Soc. Am. B, vol. 12, pp. 229–247, 1995.

    Article  ADS  Google Scholar 

  23. J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.

    MATH  Google Scholar 

  24. H. T. Banks, M. W. Buksas, and T. Lin, Electromagnetic Material Interrogation Using Conductive Interfaces and Acoustic Wavefronts. Frontiers in Applied Mathematics, Philadelphia: Society for Industrial and Applied Mathematics, 2000.

    Book  MATH  Google Scholar 

  25. K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer-Verlag, 1994.

    Google Scholar 

  26. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” Phys. A, vol. 3, pp. 233–245, 1970.

    Article  ADS  Google Scholar 

  27. P. Wyns, D. P. Foty, and K. E. Oughstun, “Numerical analysis of the precursor fields in dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1421–1429, 1989.

    Article  ADS  Google Scholar 

  28. H. Xiao, Ultrawideband Pulse Propagation in Complex Dispersive Media. PhD thesis, University of Vermont, 1998. Reprinted in UVM Research Report CSEE/98/03-01 (March 10, 1998).

    Google Scholar 

  29. M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A, vol. 34, pp. 4851–4858, 1986.

    Article  ADS  Google Scholar 

  30. C. M. Balictsis, Gaussian Pulse Propagation in a Causal, Dispersive Dielectric. PhD thesis, University of Vermont, 1993. Reprinted in UVM Research Report CSEE/93/12-06 (December 31, 1993).

    Google Scholar 

  31. K. E. Oughstun and C. M. Balictsis, “Gaussian pulse propagation in a dispersive, absorbing dielectric,” Phys. Rev. Lett., vol. 77, no. 11, pp. 2210–2213, 1996.

    Article  ADS  Google Scholar 

  32. C. M. Balictsis and K. E. Oughstun, “Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear, causally dispersive medium,” Phys. Rev. E, vol. 55, no. 2, pp. 1910–1921, 1997.

    Article  ADS  Google Scholar 

  33. S. He and S. Ström, “Time-domain wave splitting and propagation in dispersive media,” J. Opt. Soc. Am. A, vol. 13, no. 11, pp. 2200–2207, 1996.

    Article  ADS  Google Scholar 

  34. H. Xiao and K. E. Oughstun, “Hybrid numerical-asymptotic code for dispersive pulse propagation calculations,” J. Opt. Soc. Am. A, vol. 15, no. 5, pp. 1256–1267, 1998.

    Article  ADS  Google Scholar 

  35. M. A. Biot, “General theorems on the equivalence of group velocity and energy velocity,” Phys. Rev., vol. 105, pp. 1129–1137, 1957.

    Article  ADS  MATH  Google Scholar 

  36. M. J. Lighthill, “Group velocity,” J. Inst. Math. Applics., vol. 1, pp. 1–28, 1964.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oughstun, K.E. (2009). Physical Interpretations of Dispersive Pulse Dynamics. In: Electromagnetic and Optical Pulse Propagation 2. Springer Series in Optical Sciences, vol 144. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0149-1_8

Download citation

Publish with us

Policies and ethics