Physical Interpretations of Dispersive Pulse Dynamics

  • Kurt E. Oughstun
Part of the Springer Series in Optical Sciences book series (SSOS, volume 144)


The causally interrelated effects of phase dispersion and absorption on the evolution of an electromagnetic pulse as it propagates through a homogeneous linear dielectric, particularly when the pulse is ultrawideband, developed originally by Sommerfeld [1] and Brillouin [2, 3, 4] in 1914 in support of Einstein’s 1905 special theory of relativity [5], Brillouin’s signal velocity description partially corrected by Baerwald [6] in 1930, and the theory finally completed in the 1970–1980’s by Oughstun [7] and Sherman [8, 9, 10, 11, 12] in a series of papers that forms the basis of the modern asymptotic theory have been described in detail in Chaps. 12–15 of this volume. The results show that after the pulse has propagated sufficiently far in the medium, its spatiotemporal dynamics settle into a relatively simple regime, known as the mature dispersion regime, for the remainder of the propagation. In this regime, the wavefield becomes locally quasimonochromatic with fixed local frequency and wavenumber in small regions of space–time which move with their own characteristic constant velocity. The theory provides accurate but approximate analytic expressions for the local wave properties at any given space–time point in the mature dispersion regime. The expressions are complicated, however, as is their derivation from a well-defined asymptotic theory (presented in Chap. 10), and neither do the results nor their derivations provide complete insight into the physical reasons for the wavefield having the particular local space–time properties it does have in the various subregions of space moving with specific velocities.


Saddle Point Propagation Distance Critical Space Asymptotic Description Energy Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Sommerfeld, “Über die fortpflanzung des lichtes in disperdierenden medien,” Ann. Phys., vol. 44, pp. 177–202, 1914.CrossRefGoogle Scholar
  2. 2.
    L. Brillouin, “Über die fortpflanzung des licht in disperdierenden medien,” Ann. Phys., vol. 44, pp. 204–240, 1914.Google Scholar
  3. 3.
    L. Brillouin, “Propagation of electromagnetic waves in material media,” in Congrès International d’Electricité, vol. 2, pp. 739–788, Paris: Gauthier-Villars, 1933.Google Scholar
  4. 4.
    L. Brillouin, Wave Propagation and Group Velocity. New York: Academic, 1960.MATHGoogle Scholar
  5. 5.
    A. Einstein, “Zur elektrodynamik bewegter körper,” Ann. Phys., vol. 17, pp. 891–921, 1905.MATHCrossRefGoogle Scholar
  6. 6.
    H. Baerwald, “Über die fortpflanzung von signalen in disperdierenden medien,” Ann. Phys., vol. 7, pp. 731–760, 1930.CrossRefGoogle Scholar
  7. 7.
    K. E. Oughstun, Propagation of Optical Pulses in Dispersive Media. PhD thesis, The Institute of Optics, University of Rochester, 1978.Google Scholar
  8. 8.
    K. E. Oughstun and G. C. Sherman, “Optical pulse propagation in temporally dispersive Lorentz media,” J. Opt. Soc. Am., vol. 65, no. 10, p. 1224A, 1975.Google Scholar
  9. 9.
    K. E. Oughstun and G. C. Sherman, “Uniform asymptotic theory of pulse propagation in Lorentz media,” in Proceedings of the URSI Symposium on Electromagnetic Wave Theory, (Stanford University), pp. 34–36, 1977.Google Scholar
  10. 10.
    K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 69, no. 10, p. 1448A, 1979.Google Scholar
  11. 11.
    K. E. Oughstun and S. Shen, “Velocity of energy transport for a time-harmonic field in a multiple-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 5, no. 11, pp. 2395–2398, 1988.ADSCrossRefGoogle Scholar
  12. 12.
    K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1394–1420, 1989.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    I. Tolstoy, Wave Propagation. New York: McGraw-Hill, 1973. Chaps. 1 and 2.Google Scholar
  14. 14.
    L. A. Segel and G. H. Handelsman, Mathematics Applied to Continuum Mechanics. New York: Macmillan, 1977. Chap. 9.Google Scholar
  15. 15.
    B. R. Baldock and T. Bridgeman, Mathematical Theory of Wave Motion. New York: Halsted, 1981. Chap. 5.Google Scholar
  16. 16.
    L. B. Felsen, “Propagation and diffraction of transient fields in non-dispersive and dispersive media,” in Transient Electromagnetic Fields (L. B. Felsen, ed.), pp. 1–72, New York: Springer-Verlag, 1976. p. 65.Google Scholar
  17. 17.
    H. M. Nussenzveig, Causality and Dispersion Relations. New York: Academic, 1972. Chap. 1.Google Scholar
  18. 18.
    K. E. Oughstun and H. Xiao, “Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive, attenuative medium,” Phys. Rev. Lett., vol. 78, no. 4, pp. 642–645, 1997.ADSCrossRefGoogle Scholar
  19. 19.
    H. Xiao and K. E. Oughstun, “Failure of the group velocity description for ultrawideband pulse propagation in a double resonance Lorentz model dielectric,” J. Opt. Soc. Am. B, vol. 16, no. 10, pp. 1773–1785, 1999.ADSCrossRefGoogle Scholar
  20. 20.
    K. E. Oughstun and G. C. Sherman, “Comparison of the signal velocity of a pulse with the energy velocity of a time-harmonic field in Lorentz media,” in Proceedings of the URSI Symposium on Electromagnetic Wave Theory, (München), pp. C1–C5, 1980.Google Scholar
  21. 21.
    G. C. Sherman and K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett., vol. 47, pp. 1451–1454, 1981.ADSCrossRefGoogle Scholar
  22. 22.
    G. C. Sherman and K. E. Oughstun, “Energy velocity description of pulse propagation in absorbing, dispersive dielectrics,” J. Opt. Soc. Am. B, vol. 12, pp. 229–247, 1995.ADSCrossRefGoogle Scholar
  23. 23.
    J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.MATHGoogle Scholar
  24. 24.
    H. T. Banks, M. W. Buksas, and T. Lin, Electromagnetic Material Interrogation Using Conductive Interfaces and Acoustic Wavefronts. Frontiers in Applied Mathematics, Philadelphia: Society for Industrial and Applied Mathematics, 2000.MATHCrossRefGoogle Scholar
  25. 25.
    K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer-Verlag, 1994.Google Scholar
  26. 26.
    R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” Phys. A, vol. 3, pp. 233–245, 1970.ADSCrossRefGoogle Scholar
  27. 27.
    P. Wyns, D. P. Foty, and K. E. Oughstun, “Numerical analysis of the precursor fields in dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1421–1429, 1989.ADSCrossRefGoogle Scholar
  28. 28.
    H. Xiao, Ultrawideband Pulse Propagation in Complex Dispersive Media. PhD thesis, University of Vermont, 1998. Reprinted in UVM Research Report CSEE/98/03-01 (March 10, 1998).Google Scholar
  29. 29.
    M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A, vol. 34, pp. 4851–4858, 1986.ADSCrossRefGoogle Scholar
  30. 30.
    C. M. Balictsis, Gaussian Pulse Propagation in a Causal, Dispersive Dielectric. PhD thesis, University of Vermont, 1993. Reprinted in UVM Research Report CSEE/93/12-06 (December 31, 1993).Google Scholar
  31. 31.
    K. E. Oughstun and C. M. Balictsis, “Gaussian pulse propagation in a dispersive, absorbing dielectric,” Phys. Rev. Lett., vol. 77, no. 11, pp. 2210–2213, 1996.ADSCrossRefGoogle Scholar
  32. 32.
    C. M. Balictsis and K. E. Oughstun, “Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear, causally dispersive medium,” Phys. Rev. E, vol. 55, no. 2, pp. 1910–1921, 1997.ADSCrossRefGoogle Scholar
  33. 33.
    S. He and S. Ström, “Time-domain wave splitting and propagation in dispersive media,” J. Opt. Soc. Am. A, vol. 13, no. 11, pp. 2200–2207, 1996.ADSCrossRefGoogle Scholar
  34. 34.
    H. Xiao and K. E. Oughstun, “Hybrid numerical-asymptotic code for dispersive pulse propagation calculations,” J. Opt. Soc. Am. A, vol. 15, no. 5, pp. 1256–1267, 1998.ADSCrossRefGoogle Scholar
  35. 35.
    M. A. Biot, “General theorems on the equivalence of group velocity and energy velocity,” Phys. Rev., vol. 105, pp. 1129–1137, 1957.ADSMATHCrossRefGoogle Scholar
  36. 36.
    M. J. Lighthill, “Group velocity,” J. Inst. Math. Applics., vol. 1, pp. 1–28, 1964.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kurt E. Oughstun
    • 1
  1. 1.College of Engineering & Mathematical Sciences School of EngineeringUniversity of VermontBurlingtonUSA

Personalised recommendations