Molecular Imaging: Basic Approaches



Molecular imaging is a broad, multidisciplinary field that aims to discover and apply novel molecules (probes) and methods to image normal and pathological biological processes on a cellular and molecular level in vivo. One might think of molecular imaging as performing histology and pathology without harming the subject. The molecular imaging probes that target specific cells, molecules, or biological events are equivalent to the stains and antibodies used in histology and pathology. The imaging technologies and methods provide the means to visualize these probes and report on the in vivo processes. In this chapter, we cover the basic concepts of molecular imaging and show both the advantages and disadvantages of different imaging approaches. Many techniques and probes can be readily used in preclinical trials to study the efficacy of a drug.


Positron Emission Tomography Single Photon Emission Compute Tomography Molecular Imaging Iron Oxide Nanoparticles Imaging Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ballou B et al (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86PubMedCrossRefGoogle Scholar
  2. Beekman FJ, Vastenhouw B (2004) Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 49(19):4579–4592PubMedCrossRefGoogle Scholar
  3. Behm CZ, Lindner JR (2006) Cellular and molecular imaging with targeted contrast ultrasound. Ultrasound Q 22(1):67–72PubMedGoogle Scholar
  4. Bogdanov A Jr et al (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 1(1):16–23PubMedCrossRefGoogle Scholar
  5. Bouffard J et al (2008) A highly selective fluorescent probe for thiol bioimaging. Org Lett 10(1):37–40PubMedCrossRefGoogle Scholar
  6. Bruchez M Jr et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016PubMedCrossRefGoogle Scholar
  7. Bruck W et al (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42(5):783–793PubMedCrossRefGoogle Scholar
  8. Chen JW et al (2004) Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn Reson Med 52(5):1021–1028PubMedCrossRefGoogle Scholar
  9. Chen W et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952PubMedGoogle Scholar
  10. Chen JW et al (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240(2):473–481PubMedCrossRefGoogle Scholar
  11. Chen JW et al (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131(Pt 4):1123–1133PubMedCrossRefGoogle Scholar
  12. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260PubMedCrossRefGoogle Scholar
  13. Corsten MF et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67(19):8994–9000PubMedCrossRefGoogle Scholar
  14. Cotton F et al (2003) MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 60(4):640–646PubMedGoogle Scholar
  15. Foster FS et al (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26(1):1–27PubMedCrossRefGoogle Scholar
  16. Hall CS, Lanza GM, Rose JH (1977) Experimental determination of phase velocity of perfluorocarbons: applications to targeted contrast agents. Proceedings of the IEEE Ultrasonics Symposium 97CH36118, pp 1605–1608Google Scholar
  17. Herschman HR (2003) Molecular imaging: looking at problems, seeing solutions. Science 302(5645):605–608PubMedCrossRefGoogle Scholar
  18. Ho NH, Weissleder R, Tung CH (2007) A self-immolative reporter for beta-galactosidase sensing. Chembiochem 8(5):560–566PubMedCrossRefGoogle Scholar
  19. Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244(1):39–47PubMedCrossRefGoogle Scholar
  20. Jacobs AH et al (2005) 18F-Fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46(12):1948–1958PubMedGoogle Scholar
  21. Josephson L et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10(2):186–191PubMedCrossRefGoogle Scholar
  22. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13(5):661–674PubMedCrossRefGoogle Scholar
  23. Kim S et al (2005) 11C-Methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1):52–59PubMedCrossRefGoogle Scholar
  24. Kock N et al (2007) Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia 9(5):435–442PubMedCrossRefGoogle Scholar
  25. Lanza GM, Wickline SA (2001) Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 44(1):13–31PubMedCrossRefGoogle Scholar
  26. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927CrossRefGoogle Scholar
  27. Law B, Weissleder R, Tung CH (2007) Protease-sensitive fluorescent nanofibers. Bioconjug Chem 18(6):1701–1704PubMedCrossRefGoogle Scholar
  28. Lewin M et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414PubMedCrossRefGoogle Scholar
  29. Lin Y, Weissleder R, Tung CH (2002) Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug Chem 13(3):605–610PubMedCrossRefGoogle Scholar
  30. Merbach AE, Toth E (2001) The chemistry of the contrast agents in medical magnetic resonance imaging. Willey, New YorkGoogle Scholar
  31. Moats R et al (1997) A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew Chem Int Ed Engl 36(7):725–728CrossRefGoogle Scholar
  32. Nagra RM et al (1997) Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol 78(1–2):97–107PubMedCrossRefGoogle Scholar
  33. Negrin RS, Contag CH (2006) In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 6(6):484–490PubMedCrossRefGoogle Scholar
  34. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33PubMedCrossRefGoogle Scholar
  35. Ntziachristos V et al (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8(7):757–760PubMedCrossRefGoogle Scholar
  36. Perez JM et al (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820PubMedGoogle Scholar
  37. Phelps M (2004) PET: molecular imaging and its biological applications. Springer, New YorkGoogle Scholar
  38. Pomper MG (2001) Molecular imaging: an overview. Acad Radiol 8(11):1141–1153PubMedCrossRefGoogle Scholar
  39. Reimer P et al (1990) Receptor imaging: application to MR imaging of liver cancer. Radiology 177(3):729–734PubMedGoogle Scholar
  40. Rudin M (2005) Molecular imaging. Basic principles and applications in biomedical research. Imperial College Press, LondonCrossRefGoogle Scholar
  41. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2(2):123–131PubMedCrossRefGoogle Scholar
  42. Rychak JJ et al (2007) Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis. Mol Imaging 6(5):289–296PubMedGoogle Scholar
  43. Schutt EG et al (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 42(28):3218–3235PubMedCrossRefGoogle Scholar
  44. Shah K et al (2005a) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57(1):34–41PubMedCrossRefGoogle Scholar
  45. Shah K et al (2005b) In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol Ther 11(6):926–931PubMedCrossRefGoogle Scholar
  46. Sokoloff L et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916PubMedCrossRefGoogle Scholar
  47. Sun EY, Weissleder R, Josephson L (2006) Continuous analyte sensing with magnetic nanoswitches. Small 2(10):1144–1147PubMedCrossRefGoogle Scholar
  48. Tang Y et al (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254PubMedCrossRefGoogle Scholar
  49. Tjuvajev JG et al (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56(18):4087–4095PubMedGoogle Scholar
  50. Tung CH et al (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60(17):4953–4958PubMedGoogle Scholar
  51. Villanueva FS et al (2007) Myocardial ischemic memory imaging with molecular echocardiography. Circulation 115(3):345–352PubMedCrossRefGoogle Scholar
  52. Wang DS et al (2006) Molecular imaging: a primer for interventionalists and imagers. J Vasc Interv Radiol 17(9):1405–1423PubMedCrossRefGoogle Scholar
  53. Weinmann HJ et al (2003) Tissue-specific MR contrast agents. Eur J Radiol 46(1):33–44PubMedCrossRefGoogle Scholar
  54. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219(2):316–333PubMedGoogle Scholar
  55. Weissleder R et al (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493PubMedGoogle Scholar
  56. Yoffe A (2001) Semiconductor quantum dots and related systems: electronic, optical, luminiscence and related properties of low dimensional systems. Adv Phys 50:1–208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Molecular Imaging ResearchMassachusetts General HospitalBostonUSA

Personalised recommendations