Advertisement

Magnetic Resonance Imaging of Pharmacological Systems

  • Hanbing Lu
  • Thomas J. Ross
  • Elliot A. Stein
Chapter

Abstract

With the appropriate hardware, pulse sequences and analysis methods, modern MRI research is able to measure numerous neurobiologically relevant parameters including functional activation (fMRI) using blood oxygen level dependent, diffusion tensor imaging – either to measure integrity of white matter or to follow white matter fiber tracts, MR spectroscopy, changes in cerebral blood flow, cerebral blood volume and oxygen metabolism (CMRO2) and of course its more traditional applications to measure, qualitatively and recently quantitatively, brain anatomy. More recently, investigators have added various pharmacological probes to research paradigms to better mechanistically understand both the healthy and diseased brain. This chapter outlines some of the issues related to using pharmacological agents in MRI studies, some of the research question applications, limitations and potential pitfalls.

Keywords

Cerebral Blood Flow Independent Component Analysis Cerebral Blood Volume Blood Oxygen Level Dependent Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguirre GK, Detre JA, Zarahn E et al (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15:488–500PubMedCrossRefGoogle Scholar
  2. Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  3. Bloom AS, Hoffmann RG, Fuller SA et al (1999) Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model. Hum Brain Mapp 8:235–244PubMedCrossRefGoogle Scholar
  4. Breiter HC, Gollub RL, Weisskoff RM et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611PubMedCrossRefGoogle Scholar
  5. Calhoun VD, Adali T, Pearlson GD et al (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151PubMedCrossRefGoogle Scholar
  6. Choi JK, Chen YI, Hamel E et al (2006) Brain hemodynamic changes mediated by dopamine receptors: role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. NeuroImage 30:700–712PubMedCrossRefGoogle Scholar
  7. Comon P (1994) Independent component analysis, a new concept. Signal Processing 36:287–314CrossRefGoogle Scholar
  8. Cotzias GC, Horiuchi K, Fuenzalida S et al (1968) Chronic manganese poisoning. Clearance of tissue manganese concentrations with persistance of the neurological picture. Neurology 18:376–382PubMedGoogle Scholar
  9. Dacey RG Jr, Bassett JE, Takayasu M (1988) Vasomotor responses of rat intracerebral arterioles to vasoactive intestinal peptide, substance P, neuropeptide Y, and bradykinin. J Cereb Blood Flow Metab 8:254–261PubMedCrossRefGoogle Scholar
  10. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRefGoogle Scholar
  11. Friston KJ, Williams S, Howard R et al (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355PubMedCrossRefGoogle Scholar
  12. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167PubMedCrossRefGoogle Scholar
  13. Gollub RL, Breiter HC, Kantor H et al (1998) Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. J Cereb Blood Flow Metab 18:724–734PubMedCrossRefGoogle Scholar
  14. Hahn B, Ross TJ, Yang Y et al (2007) Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. J Neurosci 27:3477–3489PubMedCrossRefGoogle Scholar
  15. Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23:1–38PubMedCrossRefGoogle Scholar
  16. Hoge RD, Atkinson J, Gill B et al (1999) Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 96:9403–9408PubMedCrossRefGoogle Scholar
  17. Honey G, Bullmore E (2004) Human pharmacological MRI. Trends Pharmacol Sci 25:366–374PubMedCrossRefGoogle Scholar
  18. Hong LE, Gu H, Yang Y, et al (2008) Nicotine addiction and nicotine’s action are associated with separate cingulate functional circuits. Arch Gen Psychiatry 66(4):431–441CrossRefGoogle Scholar
  19. Hudetz AG, Biswal BB, Shen H et al (1998) Spontaneous fluctuations in cerebral oxygen supply. An introduction. Adv Exp Med Biol 454:551–559PubMedGoogle Scholar
  20. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360PubMedCrossRefGoogle Scholar
  21. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376PubMedCrossRefGoogle Scholar
  22. Jenkins BG, Sanchez-Pernaute R, Brownell AL et al (2004) Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. J Neurosci 24:9553–9560PubMedCrossRefGoogle Scholar
  23. Kim SG, Rostrup E, Larsson HB et al (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 41:1152–1161PubMedCrossRefGoogle Scholar
  24. Krimer LS, Muly EC III, Williams GV et al (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1:286–289PubMedCrossRefGoogle Scholar
  25. Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36:539–548PubMedCrossRefGoogle Scholar
  26. Lin YJ, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38:378–388PubMedCrossRefGoogle Scholar
  27. Logothetis NK, Pauls J, Augath M et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRefGoogle Scholar
  28. Lu H, Golay X, Pekar JJ et al (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274PubMedCrossRefGoogle Scholar
  29. Lu H, Patel S, Luo F et al (2004) Spatial correlations of laminar BOLD and CBV responses to rat whisker stimulation with neuronal activity localized by Fos expression. Magn Reson Med 52:1060–1068PubMedCrossRefGoogle Scholar
  30. Lu H, Scholl CA, Zuo Y et al (2007a) Quantifying the blood oxygenation level dependent effect in cerebral blood volume-weighted functional MRI at 9.4T. Magn Reson Med 58:616–621PubMedCrossRefGoogle Scholar
  31. Lu H, Xi ZX, Gitajn L et al (2007b) Cocaine-induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI). Proc Natl Acad Sci USA 104:2489–2494PubMedCrossRefGoogle Scholar
  32. Lu H, Zuo Y, Gu H et al (2007c) Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci USA 104:18265–18269PubMedCrossRefGoogle Scholar
  33. Mandeville JB, Marota JJ, Kosofsky BE et al (1998) Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 39:615–624PubMedCrossRefGoogle Scholar
  34. Marota JJ, Mandeville JB, Weisskoff RM et al (2000) Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in Rat. Neuroimage 11:13–23PubMedCrossRefGoogle Scholar
  35. McKeown MJ, Makeig S, Brown GG et al (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188PubMedCrossRefGoogle Scholar
  36. McKie S, Del Ben C, Elliott R et al (2005) Neuronal effects of acute citalopram detected by pharmacoMRI. Psychopharmacology (Berl) 180:680–686CrossRefGoogle Scholar
  37. Mendonca-Dias MH, Gaggelli E, Lauterbur PC (1983) Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin Nucl Med 13:364–376PubMedCrossRefGoogle Scholar
  38. Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev 17:139–170PubMedCrossRefGoogle Scholar
  39. Ogawa S, Menon RS, Tank DW et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812PubMedCrossRefGoogle Scholar
  40. Raichle ME, Hartman BK, Eichling JO et al (1975) Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci USA 72:3726–3730PubMedCrossRefGoogle Scholar
  41. Reinhard JF Jr, Liebmann JE, Schlosberg AJ et al (1979) Serotonin neurons project to small blood vessels in the brain. Science 206:85–87PubMedCrossRefGoogle Scholar
  42. Risinger RC, Salmeron BJ, Ross TJ et al (2005) Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage 26:1097–1108PubMedCrossRefGoogle Scholar
  43. Rostrup E, Larsson HB, Toft PB et al (1994) Functional MRI of CO2 induced increase in cerebral perfusion. NMR Biomed 7:29–34PubMedCrossRefGoogle Scholar
  44. Roy CS, Sherrington CS (1890) On the Regulation of the Blood-supply of the Brain. J Physiol 11:85–158PubMedGoogle Scholar
  45. Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115PubMedCrossRefGoogle Scholar
  46. Saleem KS, Pauls JM, Augath M et al (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34:685–700PubMedCrossRefGoogle Scholar
  47. Salmeron BJ, Stein EA (2002) Pharmacological applications of magnetic resonance imaging. Psychopharmacol Bull 36:102–129PubMedGoogle Scholar
  48. Sato A, Sato Y (1992) Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci Res 14:242–274PubMedCrossRefGoogle Scholar
  49. Silva AC, Bock NA (2008) Manganese-enhanced MRI: an exceptional tool in translational neuroimaging. Schizophr Bull 34:595–604PubMedCrossRefGoogle Scholar
  50. Sokoloff L (1976) [1–14C]-2-deoxy-d-glucose method for measuring local cerebral glucose utilization. Mathematical analysis and determination of the “lumped” constants. Neurosci Res Program Bull 14:466–468PubMedGoogle Scholar
  51. Stein EA, Pankiewicz J, Harsch HH et al (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155:1009–1015PubMedGoogle Scholar
  52. Takeda A, Ishiwatari S, Okada S (1998) In vivo stimulation-induced release of manganese in rat amygdala. Brain Res 811:147–151PubMedCrossRefGoogle Scholar
  53. Vincent JL, Patel GH, Fox MD et al (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86PubMedCrossRefGoogle Scholar
  54. Wise RG, Tracey I (2006) The role of fMRI in drug discovery. J Magn Reson Imaging 23:862–876PubMedCrossRefGoogle Scholar
  55. Wise RG, Rogers R, Painter D et al (2002) Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16:999–1014PubMedCrossRefGoogle Scholar
  56. Yang Y, Gu H, Stein EA (2004) Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation. Magn Reson Med 52:1407–1417PubMedCrossRefGoogle Scholar
  57. Zhao F, Wang P, Hendrich K et al (2005) Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. Neuroimage 27:416–424PubMedCrossRefGoogle Scholar
  58. Zonta M, Angulo MC, Gobbo S et al (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.National Institute on Drug Abuse, Intramural Research Program, Neuroimaging Research BranchNational Institutes of HealthBaltimoreUSA

Personalised recommendations