Anatomical Imaging: Volumetric Analysis



The introduction of neuroimaging methodologies revolutionised clinical diagnosis of Central Nervous System (CNS) diseases by enabling for the first time the in vivo visualisation of disease processes that were previously accessible only post-mortem. Non-invasive imaging methods have provided insight into progressive pathological processes and offer the potential to identify early markers of disease onset associated with or even preceding clinical symptom onset. Unsurprisingly, therefore, the development of these putative imaging biomarkers to identify novel therapeutic targets and provide earlier read-outs of novel drug action and efficacy has attracted great interest from both the scientific community and pharmaceutical companies. This chapter outlines applications of anatomic imaging measures, with a particular emphasis on those derived from volumetric analyses, to understanding CNS disease and therapy.


Temporal Lobe Epilepsy Grey Matter Volume Central Nervous System Disease Cortical Change Cortical Density 



The author would like to thank Morgan Hough for the VBM-SBM images and Paul Matthews and Tom Nichols for references and advice.

NLV is a full-time employee of GlaxoSmithKline.


  1. Amunts K, Schleicher A, Zilles K (2007) Cytoarchitecture of the cerebral cortex–more than localization. Neuroimage 37(4):1061–1065PubMedCrossRefGoogle Scholar
  2. Apostolova LG, Thompson PM (2007) Brain mapping as a tool to study neurodegeneration. Neurotherapeutics 4:387–400PubMedCrossRefGoogle Scholar
  3. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821PubMedCrossRefGoogle Scholar
  4. Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14(6):1238–1243PubMedCrossRefGoogle Scholar
  5. Ballmaier M, O’Brien JT, Burton EJ, Thompson PM, Rex DE, Narr KL, McKeith IG, DeLuca H, Toga AW (2004) Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer’s disease using cortical pattern matching: diagnosis and gender effects. Neuroimage 23(1):325–335PubMedCrossRefGoogle Scholar
  6. Baxter LC, Sparks DL, Johnson SC, Lenoski B, Lopez JE, Connor DJ, Sabbagh MN (2006) Relationship of cognitive measures and gray and white matter in Alzheimer’s disease. J Alzheimers Dis 9(3):253–260PubMedGoogle Scholar
  7. Bendfeldt K, Kuster P, Traud S, Egger H, Winklhofer S, Mueller-Lenke N, Naegelin Y, Gass A, Kappos L, Matthews PM, Nichols TE, Radue E-W, Borgwardt SJ (2009) Association of regional gray matter volume loss and progression of white matter lesions in multiple sclerosis–a longitudinal voxel-based morphometry study. Neuroimage 45:60–67PubMedCrossRefGoogle Scholar
  8. Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D (2009) Morphological differences in Parkinson’s disease with or without rest tremor. J Neurol 256:256–263PubMedCrossRefGoogle Scholar
  9. Bodini B, Khaleeli Z, Cercignani M, Miller DH, Thompson AJ, Ciccarelli O (2009). Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: An in vivo study with TBSS and VBM. Hum Brain Map (in press)Google Scholar
  10. Cachia A, Paillère-Martinot ML, Galinowski A, Januel D, de Beaurepaire R, Bellivier F, Artiges E, Andoh J, Bartrés-Faz D, Duchesnay E, Rivière D, Plaze M, Mangin JF, Martinot JL (2008) Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations. Neuroimage 39(9):927–935PubMedCrossRefGoogle Scholar
  11. Catani M (2006) Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Curr Opin Neurol 19:599–606PubMedCrossRefGoogle Scholar
  12. Ceccarelli A, Rocca MA, Pgani E, Colombo B, Martinelli V, Comi G, Filippi M (2008) A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 42:315–322PubMedCrossRefGoogle Scholar
  13. Chetelat G, Landeau B, Eustache F, Mézenge F, Viader F, de la Sayette V, Desgranges B, Baron JC (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 27(4):934–946PubMedCrossRefGoogle Scholar
  14. Damadian RV (1971) Tumour detection by nuclear magnetic resonance. Science 171:1151–1153PubMedCrossRefGoogle Scholar
  15. Dib M (2005) Issues for clinical drug development in neurodegenerative diseases. Drugs 65(17):2463–2479PubMedCrossRefGoogle Scholar
  16. Douaud G, Gaura V, Ribeiro MJ, Lethimonnier F, Maroy R, Verny C, Krystkowiak P, Damier P, Bachoud-Levi AC, Hantraye P, Remy P (2006) Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage 32(4):1562–1575PubMedCrossRefGoogle Scholar
  17. Douaud G, Smith S, Jenkinson M, Behrens T, Johansen-Berg H, Vickers J, James S, Voets N, Watkins K, Matthews PM, James A (2007) Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain 130:2375–2386PubMedCrossRefGoogle Scholar
  18. Dubois C, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30(4):1121–1132PubMedCrossRefGoogle Scholar
  19. Duning T, Kloska S, Steinstrater O, Kugel H, Heindel W, Knecht S (2005) Dehydration confounds the assessment of brain atrophy. Neurology 64:548–550PubMedGoogle Scholar
  20. Espeseth T, Westlye LT, Fjell AM, Walhovd KB, Rootwelt H, Reinvang I (2008) Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E epilison 4. Neurobiol Aging 29(3):329–340PubMedCrossRefGoogle Scholar
  21. Filippini N, Rao A, Wetten S, Gibson RA, Borrie M, Guzman D, Kertesz A, Loy-English I, Williams J, Nichols T, Whitcher B, Matthews PM (2009) Anatomically-distinct genetic associations of APOE epsilon 4 allele load with regional cortical atrophy in Alzheimer’s disease. Neuroimage 44(3):724–728PubMedCrossRefGoogle Scholar
  22. Foland LC, Altshuler LL, Sugar CA, Lee AD, Leow AD, Townsend J, Narr KL, Asuncion DM, Toga AW, Thompson PM (2008) Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. Neuroreport 19(2):221–224PubMedCrossRefGoogle Scholar
  23. Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358(9277):201–205PubMedCrossRefGoogle Scholar
  24. Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, Koller M (2005) AN1792(QS-21)-201 Study. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64(9):1563–1572PubMedCrossRefGoogle Scholar
  25. Giorgio A, Watkins KE, Douaud G, James AC, James S, De Stefano N, Matthews PM, Smith SM, Johansen-Berg H (2008) Changes in white matter microstructure during adolescence. Neuroimage 39(1):52–61PubMedCrossRefGoogle Scholar
  26. Giuliani NR, Calhoun VD, Pearlson GD, Francis A, Buchanan RW (2005) Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res 72(2–3):135–147CrossRefGoogle Scholar
  27. Grossman M, McMillan C, Moore P, Ding L, Glosser G, Work M, Gee J (2004) What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 127(3):628–649PubMedCrossRefGoogle Scholar
  28. Guerrini R, Dobyns WB, Barkovich AJ (2008) Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. TINS 31(3):154–162PubMedGoogle Scholar
  29. Hall J, Whalley HC, Job DE, Baig BJ, McIntosh AM, Evans KL, Thomson PA, Porteous DJ, Cunningham-Owens DG, Johnstone EC, Lawrie SM (2006) A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci 9(12):1477–1478PubMedCrossRefGoogle Scholar
  30. Harris JM, Moorhead TW, Miller P, McIntosh AM, Bonnici HM, Owens DG, Johnstone EC, Lawrie SM (2007) Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biol Psychiatry 63(1):722–729CrossRefGoogle Scholar
  31. Harrison PJ (1997) Schizophrenia: a disorder of neurodevelopment? Curr Opin Neurobiol 7(2):285–289PubMedCrossRefGoogle Scholar
  32. Henley SMD, Wild EJ, Hobbs NZ, Scahill RI, Ridgway GR, MacManus DG, Barker RA, Fox NC, Tabrizi SJ (2009) Relationship between CAG repeat length and brain volume in premanifest and early Huntington’s disease. J Neurol 256:203–212PubMedCrossRefGoogle Scholar
  33. Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162(12):2233–2245PubMedCrossRefGoogle Scholar
  34. Ide A, Rodríguez E, Zaidel E, Aboitiz F (1996) Bifurcation patterns in the human sylvian fissure: hemispheric and sex differences. Cereb Cortex 6(5):717–725PubMedCrossRefGoogle Scholar
  35. Jack CR Jr, Gehring DG, Sharbrough FW, Felmlee JP, Forbes G, Hench VS, Zinsmeister AR (1988) Temporal lobe volume measurement from MR images: accuracy and left-right asymmetry in normal persons. J Comput Assist Tomogr 12(1):21–29PubMedCrossRefGoogle Scholar
  36. Jack CR Jr, Bentley MD, Twomey CK, Zinsmeister AR (1990) MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies. Radiology 176(1):205–209PubMedGoogle Scholar
  37. Jack CR Jr, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, Stewart K, Xu Y, Shiung M, O’Brien PC, Cha R, Knopman D, Petersen RC (2003) MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60(2):253–260PubMedGoogle Scholar
  38. Jack CR Jr, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, Knopman DS, Boeve BF, Ivnik RJ, Smith GE, Cha RH, Tangalos EG, Petersen RC (2004) Comparson of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62(4):591–600PubMedGoogle Scholar
  39. Jezzard P, Matthews PM, Smith SM (2001) Functional magnetic resonance imaging: an introduction to methods. Oxford University Press, OxfordGoogle Scholar
  40. Job DE, Whalley HC, Johnstone EC, Lawrie SM (2005) Grey matter changes over time in high risk subjects developing schizophrenia. Neuroimage 25(4):1023–1030PubMedCrossRefGoogle Scholar
  41. Jones DK, Symms MR, Cercignani M, Howard RJ (2005) The effect of filter size on VBM analyses of DT-MRI data. Neuroimage 26(2):546–554PubMedCrossRefGoogle Scholar
  42. Kawachi T, Ishii K, Sakamoto S, Sasaki M, Mori T, Yamashita F, Matsuda H, Mori E (2006) Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 33(7):801–809PubMedCrossRefGoogle Scholar
  43. Kesslak JP, Nalcioglu O, Cotman CW (1991) Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 41(1):51–54PubMedGoogle Scholar
  44. Kinkingnehun S, Sarazin M, Lehericy S, Guichart-Gomez E, Hergueta T, Dubois B (2008) VBM anticipates the rate of progression of Alzheimer disease: a 3-year longitudinal study. Neurology 70:2201–2211PubMedCrossRefGoogle Scholar
  45. Lawrie SM, McIntosh AM, Hall J, Owens DGC, Johnstone EC (2008) Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull 34(2):330–340PubMedCrossRefGoogle Scholar
  46. Lin JJ, Salamon N, Dutton RA, Lee AD, Geaga JA, Hayashi KM, Toga AW, Engel J Jr, Thompson PM (2005) Three-dimensional pre-operative maps of hippocampal atrophy predict surgical outcomes in temporal lobe epilepsy. Neurology 65:1094–1097PubMedCrossRefGoogle Scholar
  47. Makris N, Kaiser J, Haselgrove C, Seidman LJ, Biederman J, Boriel D, Valera EM, Papadimitriou GM, Fischl B, Caviness VS Jr, Kennedy DN (2006) Human cerebral cortex: a system for the integration of volume- and surface-based representations. Neuroimage 33(1):139–153PubMedCrossRefGoogle Scholar
  48. Matthews PM, Wise RG (2006) Non-invasive brain imaging for experimental medicine in drug discovery. Expert Opin Drug Discov 1(2):111–121CrossRefGoogle Scholar
  49. McClure RK, Phillips I, Jazayerli R, Barnett A, Coppola R, Weinberger DR (2006) Regional change in brain morphometry in schizophrenia associated with antipsychotic treatment. Psychiatry Res 148(2–3):121–132PubMedGoogle Scholar
  50. McIntosh AM, Job DE, Moorhead WJ, Harrison LK, Whalley HC, Johnstone EC, Lawrie SM (2006) Genetic liability to schizophrenia or bipolar disorder and its relationship to brain structure. Am J Med Genet B Neuropsych Genet 141(1):76–83CrossRefGoogle Scholar
  51. Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK (2000) Lithium-induced increase in human brain grey matter. Lancet 356(9237):1241–1242PubMedCrossRefGoogle Scholar
  52. Newton SS, Duman RS (2007) Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 21(9):715–725PubMedCrossRefGoogle Scholar
  53. Nugent AC, Milham MP, Brain EE, Mah L, Cannon DM, Marrett S, Zarate CA, Pine DS, Price JL, Drevets WC (2006) Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry. Neuroimage 30(2):485–497PubMedCrossRefGoogle Scholar
  54. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, Egan MF, Meyer-Lindenberg A, Weinberger DR (2004) The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 24(45):10099–10102PubMedCrossRefGoogle Scholar
  55. Ramirez-Ruiz B, Martí MJ, Tolosa E, Bartrés-Faz D, Summerfield C, Salgado-Pineda P, Gómez-Ansón B, Junqué C (2005) Longitudinal evaluation of cerebral morphological changes in Parkinson’s disease with and without dementia. J Neurol 252(11):1345–1352PubMedCrossRefGoogle Scholar
  56. Ridgeway GR, Henley SMD, Rohrer JD, Scahill RI, Warren JD, Fox NC (2008) Ten simple rules for reporting voxel-based morphometry studies. Neuroimage 40:1429–1435CrossRefGoogle Scholar
  57. Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, Fox C (2006) Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol 5(10):828–834PubMedCrossRefGoogle Scholar
  58. Roffman JL, Gollub RL, Calhoun VD, Wassink TH, Weiss AP, Ho BC, White T, Clark VP, Fries J, Andreasen NC, Goff DC, Manoach DS (2008) MTHFR 677C –T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val-Met. Proc Natl Acad Sci USA 105(45):17573–17578PubMedCrossRefGoogle Scholar
  59. Salgado-Pineda P, Delaveau P, Falcon C, Blin O (2006) Brain T1 intensity changes after levodopa administration in healthy subjects: a voxel-based morphometry study. Br J Clin Pharmacol 62(5):546–551PubMedCrossRefGoogle Scholar
  60. Sassi RB, Nicoletti M, Brambilla P, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2002) Increased gray matter volume in lithium-treated bipolar disorder patients. Neurosci Lett 329(2):243–245PubMedCrossRefGoogle Scholar
  61. Seab JP, Jagust WJ, Wong ST, Roos MS, Reed BR, Budinger TF (1988) Quantitive NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Res Med 8(2):200–208CrossRefGoogle Scholar
  62. Senjem ML, Gunter JL, Shiung MM, Petersen RC, JR JCR (2005) Comparison of different methodological implementation of voxel-based morphometry in neurodegenerative disease. Neuroimage 26(2):600–608PubMedCrossRefGoogle Scholar
  63. Sheperd TM, Ozarslan E, Yachnis AT, King MA, Blackband SJ (2007) Diffusion tensor microscopy indicates the cytoarchitectural basis for diffusion anisotropy in the human hippocampus. Am J Neuroradiol 28(5):958–964Google Scholar
  64. Smith SM, Zhang Y, Jenkinson M, ChenJ MPM, Federico A, De Stefano N (2002) Accurate, robust and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489PubMedCrossRefGoogle Scholar
  65. Smith SM, Jenkinson M, Johansen-Berg D, Rueckert D, Nichols TE, Mackay KE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505PubMedCrossRefGoogle Scholar
  66. Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Markesbery WR (2007) Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging 28(7):1075–1087PubMedCrossRefGoogle Scholar
  67. Soreni N, Noseworthy MD, Cormier T, Oakden WK, Bells S, Schachar R (2006) Intraindividual variability of striatal (1)H-MRS brain metabolite measurements at 3T. Magn Reson Imaging 24(2):187–194PubMedCrossRefGoogle Scholar
  68. Sormani MP, Rovaris M, Valsasina P, Wilinsky JS, Comi G, Filippi M (2004) Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis. Neurology 62(8):1432–1434Google Scholar
  69. Spencer MD, Moorhead TW, McIntosh AM, Stanfield AC, Muir WJ, Hoare P, Owens DG, Lawrie SM, Johnstone EC (2007) Grey matter correlates of early psychotic symptoms in adolescents at enhanced risk of psychosis: a voxel-based study. Neuroimage 35(3):1181–1191PubMedCrossRefGoogle Scholar
  70. Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F, McCusker E, Frackowiak RS (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125(8):1815–1828PubMedCrossRefGoogle Scholar
  71. Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW (2000) Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404(6774):190–193PubMedCrossRefGoogle Scholar
  72. Thompson PM, Hayashi KM, Dutton RA, Chiang M-C, Leow AD, Sowell ER, de Zubicaray G, Becker JT, Lopez OL, Aizenstein HJ, Toga AW (2007) Tracking Alzheimer’s disease. Ann NY Acad Sci 1097:183–214PubMedCrossRefGoogle Scholar
  73. Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J (2004) A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex 14(9):966–973PubMedCrossRefGoogle Scholar
  74. van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Mandl RC, Collins DL, Evans AC, Kahn RS (2007) Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology 32(10):2057–2066PubMedCrossRefGoogle Scholar
  75. Voets NL, Hough M, Douaud G, Matthews PM, James A, Smith S (2008) Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. Neuroimage 423:665–675CrossRefGoogle Scholar
  76. Whitwell JL, Jack CR Jr (2005) Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Res Imaging 16(6):409–425CrossRefGoogle Scholar
  77. Wishart HA, Saykin AJ, McAllister TW, Rabin LA, McDonald BC, Flashman LA, Roth RM, Mamourian AC, Tsongalis GJ, Rhodes CH (2006) Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele. Neurology 67(7):1221–1224PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.GSK Clinical Imaging CentreImperial College London, Hammersmith HospitalLondonUK

Personalised recommendations