Neuroimaging in Understanding Chronic Pain Mechanisms and the Development of New Therapies

  • Karolina Wartolowska
  • Irene Tracey


This chapter describes how brain imaging methods have been used in studies on pain, what neuroimaging tells us about the role of the central nervous system in pain processing, how being in constant pain affects the brain, and finally, how neuroimaging can be applied to improve the existing analgesic drugs and to discover new therapies. Neuroimaging makes it possible to study pain processing beyond the peripheral nervous system, at the supraspinal level, in a safe, noninvasive way, without interfering with neurophysiological processes. In recent years, studies using brain imaging methods have contributed to our understanding of the mechanisms responsible for the development and maintenance of chronic pain. Moreover, neuroimaging shows promising results in characterizing different types of pain, bringing us closer to the development of mechanism-based treatments for chronic pain.


Chronic Pain Prefrontal Cortex Irritable Bowel Syndrome Arterial Spin Label Insular Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aimone LD, Bauer CA, Gebhart GF (1988) Brain-stem relays mediating stimulation-produced antinociception from the lateral hypothalamus in the rat. J Neurosci 8(7):2652–2663PubMedGoogle Scholar
  2. Anil K, Petra S, Seminowicz DA, Wood PB, Chizh BA, Catherine Bushnell M (2007) Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 27(15):4004–4007CrossRefGoogle Scholar
  3. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–484PubMedCrossRefGoogle Scholar
  4. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR (2004a) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24(46):10410–10415PubMedCrossRefGoogle Scholar
  5. Apkarian AV, Sosa Y, Krauss BR, Thomas PS, Fredrickson BE, Levy RE, Harden RN, Chialvo DR (2004b) Chronic pain patients are impaired on an emotional decision-making task. Pain 108(1–2):129–136PubMedCrossRefGoogle Scholar
  6. Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ (2001) Brainstem activation specific to migraine headache. Lancet 357(9261):1016–1017PubMedCrossRefGoogle Scholar
  7. Baliki M, Katz J, Chialvo DR, Apkarian AV (2005) Single subject pharmacological-mri (phmri) study: modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor. Mol Pain 1:32PubMedCrossRefGoogle Scholar
  8. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12165–12173PubMedCrossRefGoogle Scholar
  9. Baliki MN, Geha PY, Vania Apkarian A, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28(6):1398–1403PubMedCrossRefGoogle Scholar
  10. Bingel U, Schoell E, Bchel C (2007) Imaging pain modulation in health and disease. Curr Opin Neurol 20(4):424–431PubMedCrossRefGoogle Scholar
  11. Borsook D, Becerra LR (2006) Breaking down the barriers: fmri applications in pain, analgesia and analgesics. Mol Pain 2:30PubMedCrossRefGoogle Scholar
  12. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D (2006) Survey of chronic pain in europe: prevalence, impact on daily life, and treatment. Eur J Pain 10(4):287–333PubMedCrossRefGoogle Scholar
  13. Casey KL, Jurgen L, Satoshi M (2003) Insights into the pathophysiology of neuropathic pain through functional brain imaging. Exp Neurol 184(Supplement 1):S80–S88PubMedCrossRefGoogle Scholar
  14. Caterina M, Wei-Ting Z, Ashok K, Rosen BR, Gregory Sorensen A (2007) Mapping the spinal and supraspinal pathways of dynamic mechanical allodynia in the human trigeminal system using cardiac-gated fmri. Neuroimage 35(3):1201–1210CrossRefGoogle Scholar
  15. Chizh BA, Greenspan JD, Casey KL, Nemenov MI, Treede R-D (2008) Identifying biological markers of activity in human nociceptive pathways to facilitate analgesic drug development. Pain 140:249–253PubMedCrossRefGoogle Scholar
  16. Coghill RC, McHaffie JG, Yen YF (2003) Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci U S A 100(14):8538–8542PubMedCrossRefGoogle Scholar
  17. Craig A (2005) Pain, inflammation and a nodule after iv medication. Adv Nurse Pract 13(7):21–22PubMedGoogle Scholar
  18. Cristina G, DaSilva AFM, Josh S, Tuch DS, Nouchine H (2006) Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med 3(10):e402CrossRefGoogle Scholar
  19. Cruccu G, Anand P, Attal N, Garcia-Larrea L, Haanpaa M, Jorum E, Serra J, Jensen TS (2004) Efns guidelines on neuropathic pain assessment. Eur J Neurol 11(3):153–162PubMedCrossRefGoogle Scholar
  20. DaSilva AFM, Cristina G, Tuch DS, Josh S, Maurice V, Nouchine H (2007) Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. NeuroReport 18(4):301–305PubMedCrossRefGoogle Scholar
  21. Davis KD, Pope G, Chen J, Kwan CL, Crawley AP, Diamant NE (2008) Cortical thinning in ibs: implications for homeostatic, attention, and pain processing. Neurology 70(2):153–154PubMedCrossRefGoogle Scholar
  22. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G (2007) Hypothalamic activation in spontaneous migraine attacks. Headache 47(10):1418–1426PubMedGoogle Scholar
  23. Di Piero V, Jones AKP, Iannotti F, Powell M, Perani D, Lenzi GL, Frackowiak RSJ (1991) Chronic pain: a pet study of the central effects of percutaneous high cervical cordotomy. Pain 46(1):9–12PubMedCrossRefGoogle Scholar
  24. Dolan RJ (2002) Emotion, cognition, and behavior. Science 298(5596):1191–1194PubMedCrossRefGoogle Scholar
  25. Ducreux D, Attal N, Parker F, Bouhassira D (2006) Mechanisms of central neuropathic pain: a combined psychophysical and fmri study in syringomyelia. Brain 129(Pt 4):963–976PubMedCrossRefGoogle Scholar
  26. Eccleston C, Crombez G (2005) Attention and pain: merging behavioural and neuroscience investigations. Pain 113(1–2):7–8PubMedCrossRefGoogle Scholar
  27. Fairhurst M, Wiech K, Dunckley P, Tracey I (2007) Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128(12):101–110PubMedCrossRefGoogle Scholar
  28. Gebhart GF (2004) Descending modulation of pain. Neurosci Biobehav Rev 27(8):729–737PubMedCrossRefGoogle Scholar
  29. Gedney JJ, Logan H (2004) Memory for stress-associated acute pain. J Pain 5(2):83–91PubMedCrossRefGoogle Scholar
  30. Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128(1–2):88–100PubMedCrossRefGoogle Scholar
  31. Geha PY, Baliki MN, Wang X, Harden RN, Paice JA, Apkarian AV (2008) Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia. Pain 138(3):641–656PubMedCrossRefGoogle Scholar
  32. Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, Clauw DJ (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50(2):613–623PubMedCrossRefGoogle Scholar
  33. Grachev ID, Fredrickson BE, Apkarian AV (2000) Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 89(1):7–18PubMedCrossRefGoogle Scholar
  34. Grachev ID, Fredrickson BE, Apkarian AV (2002) Brain chemistry reflects dual states of pain and anxiety in chronic low back pain. J Neural Transm 109(10):1309–1334PubMedCrossRefGoogle Scholar
  35. Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63(2):225–236PubMedCrossRefGoogle Scholar
  36. Iannetti GD, Zambreanu L, Wise RG, Buchanan TJ, Huggins JP, Smart TS, Vennart W, Tracey I (2005) Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A 102(50):18195–18200PubMedCrossRefGoogle Scholar
  37. Irene T, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55(3):377–391CrossRefGoogle Scholar
  38. Jones AK, Cunningham VJ, Ha-Kawa S, Fujiwara T, Luthra SK, Silva S, Derbyshire S, Jones T (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 33(10):909–916PubMedCrossRefGoogle Scholar
  39. Keefe FJ, Rumble ME, Scipio CD, Giordano LA, Perri LM (2004) Psychological aspects of persistent pain: current state of the science. J Pain 5(4):195–211PubMedCrossRefGoogle Scholar
  40. Kim JH, Suh S-I, Seol HY, Oh K, Seo W-K, Yu S-W, Park K-W, Koh SB (2008) Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28(6):598–604PubMedCrossRefGoogle Scholar
  41. Klein T, Magerl W, Rolke R, Treede RD (2005) Human surrogate models of neuropathic pain. Pain 115(3):227–233PubMedCrossRefGoogle Scholar
  42. Kulkarni B, Bentley DE, Elliott R, Julyan PJ, Boger E, Watson A, Boyle Y, El-Deredy W, Jones AK (2007) Arthritic pain is processed in brain areas concerned with emotions and fear. Arthritis Rheum 56(4):1345–1354PubMedCrossRefGoogle Scholar
  43. Kupers RC, Gybels JM, Gjedde A (2000) Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 87(3):295–302PubMedCrossRefGoogle Scholar
  44. Loeser JD, Rolf-Detlef T (2008) The kyoto protocol of iasp basic pain terminology. Pain 137(3):473–477PubMedCrossRefGoogle Scholar
  45. Lorenz J, Cross D, Minoshima S, Morrow T, Paulson P, Casey K (2002) A unique representation of heat allodynia in the human brain. Neuron 35(2):383–393PubMedCrossRefGoogle Scholar
  46. Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126(Part 5):1079–1091PubMedCrossRefGoogle Scholar
  47. Maihofner C, Handwerker HO, Neundorfer B, Birklein F (2004) Cortical reorganization during recovery from complex regional pain syndrome. Neurology 63(4):693–701PubMedGoogle Scholar
  48. Matharu MS, Cohen AS, McGonigle DJ, Nick W, Frackowiak RS, Goadsby PJ (2004) Posterior hypothalamic and brainstem activation in hemicrania continua. Headache 44(8):747–761PubMedCrossRefGoogle Scholar
  49. Neilly B, Haut MW, Lisa M, Debra W (2008) Chronic pain is associated with brain volume loss in older adults: preliminary evidence. Pain Med 9(2):240–248CrossRefGoogle Scholar
  50. Ochsner KN, Ludlow DH, Knierim K, Hanelin J, Ramachandran T, Glover GC, Mackey SC (2006) Neural correlates of individual differences in pain-related fear and anxiety. Pain 120(1–2):69–77PubMedCrossRefGoogle Scholar
  51. Pagni CA, Canavero S (1995) Functional thalamic depression in a case of reversible central pain due to a spinal intramedullary cyst. case report. J Neurosurg 83(1):163–165PubMedCrossRefGoogle Scholar
  52. Philip H, Goadsby PJ (2007) The hypothalamic orexinergic system: pain and primary headaches. Headache 47(6):951–962CrossRefGoogle Scholar
  53. Porro CA (2003) Functional imaging and pain: behavior, perception, and modulation. Neuroscientist 9(5):354–369PubMedCrossRefGoogle Scholar
  54. Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288(5472):1769–1772PubMedCrossRefGoogle Scholar
  55. Ren K, Dubner R (2002) Descending modulation in persistent pain: an update. Pain 100(1–2):1–6PubMedCrossRefGoogle Scholar
  56. Rocca MA, Antonia C, Andrea F, Bruno C, Paola T, Luca B, Giancarlo C, Giuseppe S, Massimo F (2006) Brain gray matter changes in migraine patients with t2-visible lesions: a 3-t mri study. Stroke 37(7):1765–1770PubMedCrossRefGoogle Scholar
  57. Rushworth MFS, Kennerley SW, Walton ME (2005) Cognitive neuroscience: resolving conflict in and over the medial frontal cortex. Curr Biol 15(2):R54–R56PubMedCrossRefGoogle Scholar
  58. Schmidt-Wilcke T, Gnssbauer S, Neuner T, Bogdahn U, May A (2008) Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia 28(1):1–4PubMedCrossRefGoogle Scholar
  59. Schmidt-Wilcke T, Leinisch E, Gnssbauer S, Draganski B, Bogdahn U, Altmeppen J, May A (2006) Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125(1–2):89–97PubMedCrossRefGoogle Scholar
  60. Schmidt-Wilcke T, Leinisch E, Straube A, Kmpfe N, Draganski B, Diener HC, Bogdahn U, May A (2005) Gray matter decrease in patients with chronic tension type headache. Neurology 65(9):1483–1486PubMedCrossRefGoogle Scholar
  61. Schmidt-Wilcke T, Luerding R, Weigand T, Jrgens T, Schuierer G, Leinisch E, Bogdahn U (2007) Striatal grey matter increase in patients suffering from fibromyalgia – a voxel-based morphometry study. Pain 132(Suppl 1):S109–S116PubMedCrossRefGoogle Scholar
  62. Schweinhardt P, Glynn C, Brooks J, McQuay H, Jack T, Chessell I, Bountra C, Tracey I (2006) An fmri study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 1:256–265CrossRefGoogle Scholar
  63. Seifert F, Maihoefner C (2007) Representation of cold allodynia in the human brain–a functional mri study. Neuroimage 35(3):1168–1180PubMedCrossRefGoogle Scholar
  64. Seminowicz DA, Davis KD (2006) Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain 120(3):297–306PubMedCrossRefGoogle Scholar
  65. Sindrup SH, Jensen TS (1999) Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 83:389–400PubMedCrossRefGoogle Scholar
  66. Sprenger T, Boecker H, Tolle TR, Bussone G, May A, Leone M (2004) Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology 62(3):516–517PubMedGoogle Scholar
  67. Suzuki R, Rygh LJ, Dickenson AH (2004) Bad news from the brain: descending 5-ht pathways that control spinal pain processing. Trends Pharmacol Sci 25(12):613–617PubMedCrossRefGoogle Scholar
  68. Tracey I (2001) Prospects for human pharmacological functional magnetic resonance imaging (phmri). J Clin Pharmacol Suppl:21S–28SPubMedGoogle Scholar
  69. Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS, Matthews PM (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22(7):2748–2752PubMedGoogle Scholar
  70. Weiller C, May A, Limmroth V, Jptner M, Kaube H, Schayck RV, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1(7):658–660PubMedCrossRefGoogle Scholar
  71. Welch KM, Nagesh V, Aurora SK, Gelman N (2001) Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41(7):629–637PubMedCrossRefGoogle Scholar
  72. Wise RG, Rogers R, Painter D, Bantick S, Ploghaus A, Williams P, Rapeport G, Tracey I (2002) Combining fmri with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16(4):999–1014PubMedCrossRefGoogle Scholar
  73. Wise RG, Tracey I (2006) The role of fmri in drug discovery. J Magn Reson Imaging 23(6):862–876PubMedCrossRefGoogle Scholar
  74. Wise RG, Williams P, Tracey I (2004) Using fmri to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology 29(3):626–635PubMedCrossRefGoogle Scholar
  75. Woolf CJ, Bennett GJ, Doherty M, Dubner R, Kidd B, Koltzenburg M, Lipton R, Loeser JD, Payne R, Torebjork E (1998) Towards a mechanism-based classification of pain? Pain 77(3):227–229PubMedCrossRefGoogle Scholar
  76. Xavier M, Didier B (2007) Brain imaging of neuropathic pain. NeuroImage 37(Supplement 1):S80–S88Google Scholar
  77. Zambreanu L, Wise RG, Brooks JC, Iannetti GD, Tracey I (2005) A role for the brainstem in central sensitisation in humans. evidence from functional magnetic resonance imaging. Pain 114(3):397–407PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Centre), Department of Clinical Neurology and Nuffield Department of AnaestheticsUniversity of OxfordOxfordUK

Personalised recommendations