In Vivo Mouse Imaging and Spectroscopy in Drug Discovery

  • Nicolau Beckmann
  • Catherine Cannet
  • Martin Rausch
  • Rainer Kneuer
  • Hans-Ulrich Gremlich


Imaging modalities such as microcomputed tomography (micro-CT), micropositron emission tomography (micro-PET), high-resolution magnetic resonance imaging (MRI), optical imaging, and high-resolution ultrasound have become invaluable tools in preclinical pharmaceutical research. They are used to noninvasively investigate, under in vivo conditions, the rodent biology and metabolism, the disease models, and the pharmacokinetics/pharmacodynamics of drugs. Since the advantages and limitations of each approach determine its application, a small animal imaging laboratory in a pharmaceutical environment should ideally provide access to several techniques. In this chapter we illustrate how these imaging techniques may be used to obtain relevant information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease, using Alzheimer’s disease as an example.


Positron Emission Tomography Single Photon Emission Compute Tomography Cerebral Amyloid Angiopathy Plaque Load APP23 Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acton PD, Kung HF (2003) Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol 30:889–895PubMedCrossRefGoogle Scholar
  2. Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31:3324–3329PubMedCrossRefGoogle Scholar
  3. Ballou B, Lagerholm BC, Ernst LA et al (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86PubMedCrossRefGoogle Scholar
  4. Beckmann N (2000) High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med 44:252–258PubMedCrossRefGoogle Scholar
  5. Beckmann N (2006) In vivo MR techniques in drug discovery and development. . New York, Taylor & FrancisGoogle Scholar
  6. Beckmann N, Stirnimann R, Bochelen D (1999) High-resolution magnetic resonance angiography of the mouse brain: application to murine focal cerebral ischemia models. J Magn Reson 140:442–450PubMedCrossRefGoogle Scholar
  7. Beckmann N, Mueggler T, Allegrini PR et al (2001) From anatomy to the target: contributions of magnetic resonance imaging to preclinical pharmaceutical research. Anat Rec 265:85–100PubMedCrossRefGoogle Scholar
  8. Beckmann N, Schuler A, Mueggler T et al (2003) Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer’s disease. J Neurosci 23:8453–8459PubMedGoogle Scholar
  9. Beckmann N, Tigani B, Laurent D et al (2004) Magnetic resonance imaging in drug discovery: lessons from disease areas. Drug Discov Today 9:35–42PubMedCrossRefGoogle Scholar
  10. Beekman FJ, McElroy DP, Berger F et al (2002) Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes. Eur J Nucl Med Mol Imaging 29:933–938PubMedCrossRefGoogle Scholar
  11. Benveniste H, Fowler JS, Rooney W et al (2005) Maternal and fetal 11C-cocaine uptake and kinetics measured in vivo by combined PET and MRI in pregnant nonhuman primates. J Nucl Med 46:312–320PubMedGoogle Scholar
  12. Bilgen M (2006) Inductively-overcoupled coil design for high resolution magnetic resonance imaging. Biomed Eng Online 5:3Google Scholar
  13. Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3:149–158PubMedCrossRefGoogle Scholar
  14. Bornhop DJ, Contag CH, Licha K et al (2001) Advance in contrast agents, reporters, and detection. J Biomed Opt 6:106–10PubMedCrossRefGoogle Scholar
  15. Braakman N, Matysik J, van Duinen SG et al (2006) Longitudinal assessment of alzheimer’s β-amyloid plaque development in transgenic mice monitored by in vivo magnetic resonance microimaging. J Magn Reson Imaging 24:530–536PubMedCrossRefGoogle Scholar
  16. Brau AC, Hedlund LW, Johnson GA (2004) Cine magnetic resonance microscopy of the rat heart using cardiorespiratory-synchronous projection reconstruction. J Magn Reson Imaging 20:31–38PubMedCrossRefGoogle Scholar
  17. Cao Z, Bal G, Accorsi R, Acton PD (2005) Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging – a simulation study. Phys Med Biol 50:4609–4624PubMedCrossRefGoogle Scholar
  18. Castellani RJ, Smith MA, Perry G et al (2004) Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer’s disease pathogenesis. Neurobiol Aging 25:599–602PubMedCrossRefGoogle Scholar
  19. Cavanaugh D, Johnson E, Price RE et al (2004) In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging 3:55–62PubMedCrossRefGoogle Scholar
  20. Chen XJ, Henkelman RM (2006) Rapid phenotyping of mice with MRI. In: Beckmann N (ed) In vivo MR techniques in drug discovery and development. Taylor & Francis, New York, pp 75–92Google Scholar
  21. Choi IY, Lee SP, Guilfoyle DN et al (2003) In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models. Neurochem Res 28:987–1001PubMedCrossRefGoogle Scholar
  22. Choi JJ, Pernot M, Small SA et al (2007) Noninvasive, transcranial and localized opening of the blood–brain barrier using focused ultrasound in mice. Ultra-sound Med Biol 33:95–104CrossRefGoogle Scholar
  23. Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2:303–312PubMedCrossRefGoogle Scholar
  24. Colby LA, Morenko BJ (2004) Clinical considerations in rodent bioimaging. Comp Med 54:623–630PubMedGoogle Scholar
  25. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260PubMedCrossRefGoogle Scholar
  26. Contag CH, Spilman SD, Contag PR et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66:523–531PubMedCrossRefGoogle Scholar
  27. Darrasse L, Ginefri JC (2003) Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85:915–937PubMedCrossRefGoogle Scholar
  28. de la Torre JC (2002) Alzheimer disease as a vascular disorder: nosological evidence. Stroke 33:1152–1162PubMedCrossRefGoogle Scholar
  29. Del Guerra A, Belcari N (2002) Advances in animal PET scanners. Q J Nucl Med 46:35–47PubMedGoogle Scholar
  30. Deroose CM, De A, Loening AM et al (2007) Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 48:295–303PubMedGoogle Scholar
  31. Dhenain M, El Tannir El Tayara N, Wu TD et al (2007) Characterization of in vivo MRI detectable thalamic amyloid plaques from APP/PS1 mice. Neurobiol Aging 30:41–53Google Scholar
  32. Dhenain M, Privat N, Duyckaerts C et al (2002) Senile plaques do not induce susceptibility effects in T2*-weighted MR microscopic images. NMR Biomed 15:197–203PubMedCrossRefGoogle Scholar
  33. Dodd SJ, Ho C (2002) Short planar gradient coils for MR microscopy using concentric return paths. J Magn Reson 156(1):1–9PubMedCrossRefGoogle Scholar
  34. Duatti A (2004) In vivo imaging of oligonucleotides with nuclear tomography. Curr Drug Targets 5:753–760PubMedCrossRefGoogle Scholar
  35. El Tannir El Tayara N, Delatour B, Le Cudennec C et al (2006) Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 22:199–208PubMedCrossRefGoogle Scholar
  36. El Tayara Nel T, Volk A, Dhenain M (2007) Delatour B.Transverse relaxation time reflects brain amyloidosis in young APP/PS1 transgenic mice. Magn Reson Med 58:179–184PubMedCrossRefGoogle Scholar
  37. Falangola MF, Lee SP, Nixon RA et al (2005) Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem Res 30:201–205PubMedCrossRefGoogle Scholar
  38. Falangola MF, Dyakin VV, Lee SP et al (2007) Quantitative MRI reveals aging-associated T2 changes in mouse models of Alzheimer’s disease. NMR Biomed 20:343–351PubMedCrossRefGoogle Scholar
  39. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611PubMedCrossRefGoogle Scholar
  40. Fischman AJ, Alpert NM, Rubin RH (2002) Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet 41:581–602PubMedCrossRefGoogle Scholar
  41. Ford NL, Thornton MM, Holdsworth DW (2003) Fundamental image quality limits for microcomputed tomography in small animals. Med Phys 30:2869–2877PubMedCrossRefGoogle Scholar
  42. Ford NL, Nikolov HN, Norley CJ et al (2005) Prospective respiratory-gated micro-CT of free breathing rodents. Med Phys 32:2888–2898PubMedCrossRefGoogle Scholar
  43. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634PubMedCrossRefGoogle Scholar
  44. Funovics M, Weissleder R, Tung CH (2003) Protease sensors for bioimaging. Anal Bioanal Chem 377:956–963PubMedCrossRefGoogle Scholar
  45. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693PubMedCrossRefGoogle Scholar
  46. Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976PubMedCrossRefGoogle Scholar
  47. Hammoud DA, Hoffman JM, Pomper MG (2007) Molecular neuroimaging: From conventional to emerging techniques. Radiology 245:21–42PubMedCrossRefGoogle Scholar
  48. Hedlund LW, Cofer GP, Owen SJ et al (2000) MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging. Magn Reson Imaging 18:753–759PubMedCrossRefGoogle Scholar
  49. Heerschap A, Sommers MG in ‘t Zandt HJ et al (2004) Nuclear magnetic resonance in laboratory animals. Methods Enzymol 385:41–63Google Scholar
  50. Helpern JA, Lee SP, Falangola MF et al (2004) MRI assessment of neuropathology in a transgenic mouse model of Alzheimer’s disease. Magn Reson Med 51:794–798PubMedCrossRefGoogle Scholar
  51. Higuchi M, Iwata N, Matsuba Y et al (2005) 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 8:527–533PubMedCrossRefGoogle Scholar
  52. Hintersteiner M, Enz A, Frey P et al (2005) In vivo detection of amyloid-β deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23:577–583PubMedCrossRefGoogle Scholar
  53. Hogemann D, Ntziachristos V, Josephson L et al (2002) High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug Chem 13:116–121PubMedCrossRefGoogle Scholar
  54. Hooijmans CR, Rutters F, Dederen PJ et al (2007) Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD). Neurobiol Dis 28:16–29PubMedCrossRefGoogle Scholar
  55. Hsu WK, Virk MS, Feeley BT et al (2008) Characterization of osteolytic, osteoblastic, and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J Nucl Med 49:414–421PubMedCrossRefGoogle Scholar
  56. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360PubMedCrossRefGoogle Scholar
  57. Jack CR Jr, Wengenack TM, Reyes DA et al (2005) In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 25:10041–10048PubMedCrossRefGoogle Scholar
  58. Jenkins BG, Andreassen OA, Dedeoglu A et al (2005) Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington’s disease. J Neurochem 95:553–562PubMedCrossRefGoogle Scholar
  59. Kandimalla KK, Wengenack TM, Curran GL et al (2007) Pharmacokinetics and amyloid plaque targeting ability of a novel peptide-based magnetic resonance contrast agent in wild-type and Alzheimer’s disease transgenic mice. J Pharmacol Exp Ther 322:541–549PubMedCrossRefGoogle Scholar
  60. Kantarci K (2005) Magnetic resonance markers for early diagnosis and progression of Alzheimer’s disease. Expert Rev Neurother 5:663–670PubMedCrossRefGoogle Scholar
  61. Kantarci K, Petersen RC, Boeve BF et al (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393–1398PubMedGoogle Scholar
  62. Kinoshita M, Hynynen K (2005) A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun 335:393–399PubMedCrossRefGoogle Scholar
  63. Kinoshita M, McDannold N, Jolesz FA et al (2006a) Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 340:1085–1090PubMedCrossRefGoogle Scholar
  64. Kinoshita M, McDannold N, Jolesz FA et al (2006b) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci USA 103:11719–11723PubMedCrossRefGoogle Scholar
  65. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319PubMedCrossRefGoogle Scholar
  66. Klunk WE, Lopresti BJ, Ikonomovic MD et al (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 25:10598–10606PubMedCrossRefGoogle Scholar
  67. Krucker T, Schuler A, Meyer EP et al (2004) Magnetic resonance angiography and vascular corrosion casting as tools in biomedical research: application to transgenic mice modeling Alzheimer’s disease. Neurol Res 26:507–516PubMedCrossRefGoogle Scholar
  68. Krucker T, Lang A, Meyer EP (2006) New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc Res Tech 69:138–147PubMedCrossRefGoogle Scholar
  69. Lanza GM, Winter P, Caruthers S et al (2004) Novel paramagnetic contrat agents for molecular imaging and targeted drug delivery. Curr Pharm Biotech 5:495–507CrossRefGoogle Scholar
  70. Lee SP, Falangola MF, Nixon RA et al (2004) Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer’s disease using MR microscopy without contrast reagents. Magn Reson Med 52:538–544PubMedCrossRefGoogle Scholar
  71. Leggett J, Crozier S, Bowtell RW (2003) Actively shielded multi-layer gradient coil designs with improved cooling properties. J Magn Reson 165:196–207PubMedCrossRefGoogle Scholar
  72. Licha K (2002) Contrast agents for optical imaging. Top Curr Chem 222:1–29CrossRefGoogle Scholar
  73. Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325PubMedCrossRefGoogle Scholar
  74. Lucas AJ, Hawkes RC, Ansorge RE et al (2006) Development of a combined microPET-MR system. Technol Cancer Res Treat 5:337–341PubMedGoogle Scholar
  75. Maeda J, Ji B, Irie T et al (2007) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27:10957–10968PubMedCrossRefGoogle Scholar
  76. Marjanska M, Curran GL, Wengenack TM et al (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 102:11906–11910PubMedCrossRefGoogle Scholar
  77. Mathis CA, Wang Y, Holt DP et al (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46:2740–2754PubMedCrossRefGoogle Scholar
  78. Merron A, Peerlinck I, Martin-Duque P et al (2007) SPECT/CT imaging of oncolytic adenovirus propagation in tumours in vivo using the Na/I symporter as a reporter gene. Gene Ther 14:1731–1738PubMedCrossRefGoogle Scholar
  79. Meyer EP, Ulmann-Schuler A, Staufenbiel M et al (2008) Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci USA 105:3587–3592PubMedCrossRefGoogle Scholar
  80. Miyasaka N, Takahashi K, Hetherington HP (2006) Fully automated shim mapping method for spectroscopic imaging of the mouse brain at 9.4 T. Magn Reson Med 55:198–202PubMedCrossRefGoogle Scholar
  81. Morawski AM, Lanza GA, Wickline SA (2005) Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16:89–92PubMedCrossRefGoogle Scholar
  82. Mueggler T (2006) Magnetic resonance imaging and spectroscopy in transgenic mice modelling Alzheimer’s disease. In: Beckmann N (ed) Vivo MR techniques in drug discovery and development. Taylor & Francis, New York, pp 95–110Google Scholar
  83. Mueggler T, Sturchler-Pierrat C, Baumann D et al (2002) Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neurosci 22:7218–7224PubMedGoogle Scholar
  84. Mueggler T, Meyer-Luehmann M, Rausch M et al (2003a) Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis. Eur J Neurosci 20:811–817CrossRefGoogle Scholar
  85. Mueggler T, Baumann D, Rausch M et al (2003b) Age-dependent impairment of somatosensory response in the amyloid precursor protein 23 transgenic mouse model of Alzheimer’s disease. J Neurosci 23:8231–8236PubMedGoogle Scholar
  86. Mulder WJ, Douma K, Koning GA et al (2006) Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn Reson Med 55:1170–1174PubMedCrossRefGoogle Scholar
  87. Müller C, Forrer F, Schibli R et al (2008) SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J Nucl Med 49:310–317PubMedCrossRefGoogle Scholar
  88. Nahrendorf M, Zhang H, Hembrador S et al (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387PubMedCrossRefGoogle Scholar
  89. Nicoll JA, Yamada M, Frackowiak J et al (2004) Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer’s disease. Pro-CAA position statement. Neurobiol Aging 25:589–597CrossRefGoogle Scholar
  90. Nieman BJ, Bishop J, Dazai J et al (2007) MR technology for biological studies in mice. NMR Biomed 20:291–303Google Scholar
  91. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208PubMedGoogle Scholar
  92. Ntziachristos V, Ripoll J, Wang LV et al (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320PubMedCrossRefGoogle Scholar
  93. Perez JM, Josephson L, O’Loughlin T et al (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816–820PubMedGoogle Scholar
  94. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97:9226–9233PubMedCrossRefGoogle Scholar
  95. Pichler BJ, Judenhofer MS, Catana C et al (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47:639–647PubMedGoogle Scholar
  96. Piwnica-Worms D, Schuster DP, Garbow JR (2004) Molecular imaging of host-pathogen interactions in intact small animals. Cell Microbiol 6:319–331PubMedCrossRefGoogle Scholar
  97. Poduslo JF, Wengenack TM, Curran GL et al (2002) Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 11:315–329PubMedCrossRefGoogle Scholar
  98. Poirier-Quinot M, Ginefri JC, Robert P et al (2008) Performance of a miniature HTS surface coil for in vivo micro-imaging of the mouse in a standard 1.5 T clinical whole-body scanner. Magn Reson Med 60:917–927Google Scholar
  99. Portney NG, Ozkan M (2006) Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384:620–630PubMedCrossRefGoogle Scholar
  100. Ratering D, Baltes C, Nordmeyer-Massner J et al (2008) Performance of a 200-MHz cryogenic RF probe designed for MRI and MRS of the murine brain. Magn Reson Med 59:1440–1447.Google Scholar
  101. Raylman RR, Majewski S, Velan SS et al (2007) Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager. J Magn Reson 186:305–310PubMedCrossRefGoogle Scholar
  102. Redwine JM, Kosofsky B, Jacobs RE et al (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci USA 100:1381–1386PubMedCrossRefGoogle Scholar
  103. Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6:432–440PubMedCrossRefGoogle Scholar
  104. Ritman EL (2004) Micro-computed tomography-current status and developments. Annu Rev Biomed Eng 6:185–208PubMedCrossRefGoogle Scholar
  105. Rudin M (2006) Molecular imaging. Basic principles and applications in biomedical research. Imperial College Press, LondonGoogle Scholar
  106. Rudin M, Beckmann N, Porszasz R et al (1999) In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives. NMR Biomed 12:69–97PubMedCrossRefGoogle Scholar
  107. Schwarcz A, Natt O, Watanabe T et al (2003) Localized proton MRS of cerebral metabolite profiles in different mouse strains. Magn Reson Med 49:822–827PubMedCrossRefGoogle Scholar
  108. Seo Y, Gao DW, Hasegawa BH et al (2007) Rodent brain imaging with SPECT/CT. Med Phys 34:1217–1220PubMedCrossRefGoogle Scholar
  109. Silbert LC, Quinn JF, Moore MM et al (2003) Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 61:487–492PubMedGoogle Scholar
  110. Sipkins DA, Cheresh DA, Kazemi MR et al (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626PubMedCrossRefGoogle Scholar
  111. Slates RB, Farahani K, Shao Y et al (1999) A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. Phys Med Biol 44:2015–2027PubMedCrossRefGoogle Scholar
  112. Tay YC, Ruangma A, Rowland D et al (2005) Performance evaluation of the microPET focus: a Third-generation micropet scanner dedicated to animal imaging. J Nucl Med 46:455–463Google Scholar
  113. Thal LJ, Kantarci K, Reiman EM et al (2006) The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord 20:6–15PubMedCrossRefGoogle Scholar
  114. Thal DR, Capetillo-Zarate E, Larionov S et al (2008) Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2008.01.017Google Scholar
  115. Tkac I, Henry PG, Andersen P et al (2004) Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn Reson Med 52:478–484PubMedCrossRefGoogle Scholar
  116. Tornell J, Snaith M (2002) Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov Today 7:461–470PubMedCrossRefGoogle Scholar
  117. Toyama H, Ye D, Ichise M et al (2005) PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32:593–600PubMedCrossRefGoogle Scholar
  118. Tung CH, Mahmood U, Bredow S et al (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60:4953–4958PubMedGoogle Scholar
  119. Vanhoutte G, Dewachter I, Borghgraef P et al (2005) Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 53:607–613PubMedCrossRefGoogle Scholar
  120. Voehler MW, Collier G, Young JK et al (2006) Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J Magn Reson 183:102–109PubMedCrossRefGoogle Scholar
  121. von Kienlin M, Kunnecke B, Metzger F et al (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18:32–39CrossRefGoogle Scholar
  122. Wadghiri YZ, Sigurdsson EM, Sadowski M et al (2003) Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50:293–302PubMedCrossRefGoogle Scholar
  123. Wang G, Li Y, Jiang M (2004) Uniqueness theorems in bioluminescence tomography. Med Phys 31:2289–2299PubMedCrossRefGoogle Scholar
  124. Webb AG (1997) Radiofrequency microcoils in magnetic resonance. Progr Nucl Magn Reson Spectrosc 31:1–42CrossRefGoogle Scholar
  125. Weber S, Bauer A (2004) Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 31:1545–1555PubMedCrossRefGoogle Scholar
  126. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128PubMedCrossRefGoogle Scholar
  127. Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355PubMedCrossRefGoogle Scholar
  128. Yang Y, Tai YC, Siegel S et al (2004) Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol 49:2527–2545PubMedCrossRefGoogle Scholar
  129. Zacharakis G, Kambara H, Shih H et al (2005) Volumetric tomography of fluorescent proteins through small animals in vivo. Proc Natl Acad Sci USA 102:18252–18257PubMedCrossRefGoogle Scholar
  130. Zambrowicz BP, Sands AT (2003) Knockouts model the 100 best-selling drugs – will they model the next 100? Nat Rev Drug Discov 2:38–51PubMedCrossRefGoogle Scholar
  131. Zambrowicz BP, Turner CA, Sands AT (2003) Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry. Curr Opin Pharmacol 3:563–570PubMedCrossRefGoogle Scholar
  132. Zhang W, Feng JQ, Harris SE et al (2001) Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res 10:423–434PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nicolau Beckmann
    • 1
  • Catherine Cannet
  • Martin Rausch
  • Rainer Kneuer
  • Hans-Ulrich Gremlich
  1. 1.Global Imaging GroupNovartis Institutes for BioMedical ResearchBaselSwitzerland

Personalised recommendations