Polymeric Carriers for Anticancer Drugs


Chemotherapy together with debulking surgery is a major treatment for cancer. There are, however, major limitations of conventional cytotoxic drugs that result from their nonspecific toxicity (e.g., the lack of selectivity) in the body and the intrinsic or acquired multidrug resistance (MDR) of cancer cells. To this end, polymeric drug carriers have been developed to address this nonspecificity and MDR [1]. It is believed that these drug carriers alter the biodistribution and increase the bioavailability of incorporated anticancer agents to the target cells [2].


Drug Release Block Copolymer Drug Carrier Lower Critical Solution Temperature Polymeric Micelle 


  1. 1.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2: 751–760.PubMedCrossRefGoogle Scholar
  2. 2.
    Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004; 303: 1818–1822.PubMedCrossRefGoogle Scholar
  3. 3.
    Minko T. Soluble polymer conjugates for drug delivery. Drug Discov Today 2005; 2: 15–20.CrossRefGoogle Scholar
  4. 4.
    Gillies ER, Frechet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005; 10: 35–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70: 1–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliver Rev 2001; 47: 113–131.CrossRefGoogle Scholar
  7. 7.
    Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release 2008, doi:10.1016/j.jconrel.2008.05.003Google Scholar
  8. 8.
    Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G, Therien MJ, Greene MI, Hammer DA, Murali R. Polymersomes: A new multi-functional tool for cancer diagnosis and therapy. Methods 2008, doi:10.1016/j.ymeth.2008.05.006Google Scholar
  9. 9.
    Khandare J, Minko T. Polymer – drug conjugates: Progress in polymeric prodrugs. Prog Polym Sci 2006; 31: 359–397.CrossRefGoogle Scholar
  10. 10.
    Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2: 347–360.PubMedCrossRefGoogle Scholar
  11. 11.
    Duncan R, Vicent MJ, Greco F, Nicholson RI. Polymer–drug conjugates: Towards a novel approach for the treatment of endrocine-related cancer. Endocr-Relat Cancer 2005; 12: S189–S199.PubMedCrossRefGoogle Scholar
  12. 12.
    Malik N, Evagorou EG, Duncan R. Dendrimer–platinate: A novel approach to cancer chemotherapy. Anti-Cancer Drugs 1999; 10: 767–776.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhuo RX, Du B, Lu ZR. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release 1999; 57: 249–257.PubMedCrossRefGoogle Scholar
  14. 14.
    Bader H, Ringsdorf H, Schmidt B. Water soluble polymers in medicine. Angew Makromol Chem 1984; 123/124: 457–485.Google Scholar
  15. 15.
    Jones MC, Leroux JC. Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48:101–111.PubMedCrossRefGoogle Scholar
  16. 16.
    Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block copolymer micelles as vehicles for drug delivery. J Control Release 1993; 24:119–132.CrossRefGoogle Scholar
  17. 17.
    Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991; 51: 3229–3236.PubMedGoogle Scholar
  18. 18.
    Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, Inoue S. Polymer micelles as novel drug carrier: Adriamycin conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Release 1990; 11: 269–278.CrossRefGoogle Scholar
  19. 19.
    Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliver Rev 2008; 60: 899–914.CrossRefGoogle Scholar
  20. 20.
    Peppas LB. Recent advances on the use of biodegradable microparticles and nanoparticles in the controlled drug delivery. Int J Pharm 1995; 116: 1–9.CrossRefGoogle Scholar
  21. 21.
    Zimmer A, Kreuter J. Microspheres and nanoparticles used in ocular drug delivery systems. Adv Drug Deliver Rev 1995; 16: 61–73.CrossRefGoogle Scholar
  22. 22.
    Uhrich KE, Cannizzaro SM, Langer RS, Shakessheff KM. Polymeric systems for controlled drug release. Chem Rev 1999; 99: 3181–3198.PubMedCrossRefGoogle Scholar
  23. 23.
    Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv Drug Deliver Rev 2002; 54: 135–147.CrossRefGoogle Scholar
  24. 24.
    Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV. Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release 2005; 107: 143–157.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee ES, Kim D, Youn YS, Oh KT, Bae YH. A novel virus-mimetic nanogel vehicle. Angew Chem Int Edit 2008; 47: 2418–2421.CrossRefGoogle Scholar
  26. 26.
    Dischera DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D, Photos SCP, Ahmed F. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Prog Polym Sci 2007; 32: 838–857.CrossRefGoogle Scholar
  27. 27.
    Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA. Polymersomes: Tough vesicles made from diblock copolymers. Science 1999; 284: 1143–1146.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee JCM, Bermu­dez H, Discher BM, Sheehan MA, Won YY, Bates FS, Discher DE. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol Bioeng 2001; 73: 135–145.PubMedCrossRefGoogle Scholar
  29. 29.
    Meng F, Engbers GHM, Feijen J. Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J Control Release 2005; 101: 187–198.PubMedCrossRefGoogle Scholar
  30. 30.
    Bermu­dez H, Brannan AK, Hammer DA, Bates FS, Discher DE. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 2002; 35: 8203–8208.CrossRefGoogle Scholar
  31. 31.
    Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 2003; 90: 323–334.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghoroghchian PP, Frail PR, Su­sumu K, Blessington D, Brannan AK, Bates FS, Chance B, Hammer DA, Therien MJ. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. P Natl Acad Sci USA 2005; 102: 2922–2927.CrossRefGoogle Scholar
  33. 33.
    Antonietti M, Forster S. Vesicles and liposomes: A self-assembly principle beyond lipids. Adv Mater 2003; 15: 1323–1333.CrossRefGoogle Scholar
  34. 34.
    Zu­pancich JA, Bates FS, Hillmyer MA. Design and synthesis of a low band gap conjugated macroinitiator: Toward rod-coil donor-acceptor block copolymers Macromolecules 2006; 39: 4286–4288.CrossRefGoogle Scholar
  35. 35.
    Hillmyer MA, Bates FS. Synthesis and characterization of model polyalkane–poly(ethylene oxide) block copolymers. Macromolecules 1996; 29: 6994–7002.CrossRefGoogle Scholar
  36. 36.
    Discher DE, Ahmed F. POLYMERSOMES. Annu Rev Biomed Eng 2006; 8: 323–341.PubMedCrossRefGoogle Scholar
  37. 37.
    Garvin KL, Miyano JA, Robinson D, Giger D, Novak J, Radio S. Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. A canine model. J Bone Joint Surg Am 1994; 76: 1500–1506.PubMedGoogle Scholar
  38. 38.
    Lesser GJ, Grossman SA, Leong KW, Lo HN, Eller S. In vitro and in vivo studies of subcutaneous hydromorphone implants designed for the treatment of cancer pain. Pain 1996; 65: 265–272.PubMedCrossRefGoogle Scholar
  39. 39.
    Suhonen SP, Allonen HO, Lahteenmaki P. Gynecology: Sustained-release estradiol implants and a levonorgestrel-releasing intrauterine device in hormone replacement therapy. Am J Obstet Gynecol 1995; 172: 562–567.PubMedCrossRefGoogle Scholar
  40. 40.
    Fujita T, Tamura T, Yamada H, Yamamoto A, Muranishi S. Pharmacokinetics of mitomycin C (MMC) after intraperitoneal administration of MMC-gelatin gel and its anti-tumor effects against sarcoma-180 bearing mice. J Drug Target 1997; 4: 289–296.PubMedCrossRefGoogle Scholar
  41. 41.
    Bernatchez SF, Merkli A, Tabatabay C, Gurny R, Zhao QH, Anderson JM. Biotolerance of a semisolid hydrophobic biodegradable poly(ortho ester) for controlled drug delivery. J Biomed Mater Res 1993; 27: 677–681.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen J, Jo S, Park K. Polysaccharide hydrogels for protein drug delivery. Carbohyd Polym 1995; 28: 69–76.CrossRefGoogle Scholar
  43. 43.
    Seymour LW, Duncan R, Duffy J, Ng SY, Heller J. Poly(ortho ester) matrices for controlled-release of the antitumor agent 5-fluorouracil. J Control Release 1994; 31: 201–206.CrossRefGoogle Scholar
  44. 44.
    Imasaka K, Yoshida M, Fukuzaki H, Asano M, Kumakura M, Mashimo T. New biodegradable polymers of L-lactic acid and aromatic hydroxy-acids and their applications in drug delivery systems. Int J Pharm 1992; 81: 31–38.CrossRefGoogle Scholar
  45. 45.
    Cha Y, Choi YK, Bae YH. 1997. Thermosensitive biodegradable polymers based on poly(ether-ester) block copolymers. US Patent 5 702-717.Google Scholar
  46. 46.
    Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug delivery system. Nature 1997; 388: 860–862.PubMedCrossRefGoogle Scholar
  47. 47.
    Rathi R, Zentner GM, Jeong B. 2000. Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties. US Patent 6 117 949.Google Scholar
  48. 48.
    Jeong B, Choi YK, Bae YH, Zentner G, Kim SW. New biodegradable polymers for injectable drug delivery systems. J Control Release 1999; 62: 109–114.PubMedCrossRefGoogle Scholar
  49. 49.
    Qiao M, Chen D, Ma X, Liu Y. Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 2005; 294: 103–112.PubMedCrossRefGoogle Scholar
  50. 50.
    Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliver Rev 2004; 56: 1273–1289.CrossRefGoogle Scholar
  51. 51.
    Yokogawa K, Nakashima E, Ishizaki J, Maeda H, Nagano T, Ichimura F. Relationships in the structure – tissue distribution of basic drugs in the rabbit, Pharm Res 1990; 7: 691–696.PubMedCrossRefGoogle Scholar
  52. 52.
    Hageluken A, Grunbaum L, Nurnberg B, Harhammer R, Schunack W, Seifert R. Lipophilic beta-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Biochem Pharmacol 1994; 47: 1789–1795.PubMedCrossRefGoogle Scholar
  53. 53.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliver Rev 2001; 46: 3–26.CrossRefGoogle Scholar
  54. 54.
    Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004; 61: 2549–2559.PubMedCrossRefGoogle Scholar
  55. 55.
    Thompson D, Chaubal MV. Cyclodextrins (CDS)-excipients by definition, drug delivery systems by function (part I: injectable applications), Drug Deliver Technol 2000; 2: 34–38.Google Scholar
  56. 56.
    Ansel HC, Allen LV, Popovich NG. Pharmaceutical Dosage Forms and Drug Delivery Systems. Kluwer, Philadelphia, Baltimore, New York, London, 1999.Google Scholar
  57. 57.
    Ray R, Kibbe AH, Rowe R, Shleskey P, Weller P. Handbook of Pharmaceutical Excipients, APhA Publications, Washington, 2003.Google Scholar
  58. 58.
    Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release 2003; 86: 33–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang X, Burt HM. Diblock copolymers of poly(dl-lactide-block-methoxy polyethylene glycol) as micellar carriers of taxol. Pharm Res 1995; 12: S-265.CrossRefGoogle Scholar
  60. 60.
    Swindell CS, Krauss NE. Biologically active taxol analogues with deleted A-ring side chain substituents and variable C-2' configurations. J Med Chem 1991; 34: 1176–1184.PubMedCrossRefGoogle Scholar
  61. 61.
    Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, Minko T. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjugate Chem 2006; 17: 1464–1472.CrossRefGoogle Scholar
  62. 62.
    Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990; 268: 235–238.PubMedCrossRefGoogle Scholar
  63. 63.
    Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1991; 1062: 77–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Allen TM, Hansen C, Martin F, Redemann C, Young YA. Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991; 1066: 29–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Naper DH. Polymeric Stabilization of Colloidal Dispersions. Academic Press, New York, 1983.Google Scholar
  66. 66.
    Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo: relation to circulation lifetimes. J Biol Chem 1992; 267: 18759–18765.PubMedGoogle Scholar
  67. 67.
    Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug 1987; 3: 123–193.Google Scholar
  68. 68.
    Needham D, McIntosh TJ, Lasic DD. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1992; 1108: 40–48.PubMedCrossRefGoogle Scholar
  69. 69.
    Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov Jr AA, Trubetskoy VS, Herron JN, Gentry CA. Poly(ethylene glycol) on the liposome surface: On the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1994; 1195: 11–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliver Rev 1995; 16: 157–182.CrossRefGoogle Scholar
  71. 71.
    Powell GM. Polyethylene glycol. In: RL Davidson (Ed.), Handbook of Water Soluble Gums and Resins. McGraw-Hill, New York, 1980.Google Scholar
  72. 72.
    Yamaoka T, Tabata T, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 1994; 83: 601–606.PubMedCrossRefGoogle Scholar
  73. 73.
    Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliver Rev 2006; 58: 1532–1555.CrossRefGoogle Scholar
  74. 74.
    Veronese FM. Peptide and protein PEGylation: A review of problems and solutions. Biomaterials 2001; 22: 405–417.PubMedCrossRefGoogle Scholar
  75. 75.
    Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliver Rev 1995; 16: 141–155.CrossRefGoogle Scholar
  76. 76.
    Torchilin VP, Levchenko TS, Whiteman KR, Yaroslavov AA, Tsatsakis AM, Rizos AK, Michailova EV, Shtilman MI. Amphiphilic poly-N-vinylpyrrolidones: Synthesis, properties and liposome surface modification. Biomaterials 2001; 22: 3035–3044.PubMedCrossRefGoogle Scholar
  77. 77.
    Monfardini C, Schiavon O, Caliceti P, Morpurgo M, Harris JM, Veronese FM. A branched monomethoxypoly(ethylene glycol) for protein modification, Bioconjugate Chem 1995; 6: 62–69.CrossRefGoogle Scholar
  78. 78.
    Woodle MC, Engbers CM, Zalipsky S. New amphipathic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes, Bioconjugate Chem 1994; 5: 493–496.CrossRefGoogle Scholar
  79. 79.
    Maruyama K, Okuizumi S, Ishida O, Yamauchi H, Kikuchi H, Iwatsuru M. Phosphatidyl polyglycerols prolong liposome circulation in vivo. Int J Pharm 1994; 111: 103–107.CrossRefGoogle Scholar
  80. 80.
    Takeuchi H, Kojima H, Toyoda T, Yamamoto H, Hino T, Kawashima Y. Prolonged circulation time of doxorubicin loaded liposomes coated with a modified polyvinyl alcohol after intravenous injection in rats. Eur J Pharm Biopharm 1999; 48: 123–129.PubMedCrossRefGoogle Scholar
  81. 81.
    Yesair DW, Schwartzbach E, Shuck D, Denine EP, Asbell MA. Comparative pharmacokinetics of daunomycin and Adriamycin in several animal species. Cancer Res 1972; 32: 1177–1183.PubMedGoogle Scholar
  82. 82.
    Formelli F, C'arsana R, Pollini C. Pharmacokinetics of 4'-deoxy-4'-iodo-doxorubicin in plasma and tissues of tumor-bearing mice compared with doxorubicin. Cancer Res 1987; 47: 5401–5406.PubMedGoogle Scholar
  83. 83.
    Cummings J, Merry S, Willmott N. Disposition kinetics of adriamycin, adriamycinol and their 7-deoxyglycones in AKR mice bearing a subcutaneously growing ridgway osteogenic sarcoma (ROS). Eur J Cancer Clin Oncol 1986; 22: 451–460.PubMedCrossRefGoogle Scholar
  84. 84.
    Yokoyama M, Okaiio T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood, Cancer Res 1991; 51: 3229–3236.PubMedGoogle Scholar
  85. 85.
    Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clin Pharmacokinet 2003; 42: 419–436.PubMedCrossRefGoogle Scholar
  86. 86.
    Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditch TE, Murray T, Burtles S, Fraier D, Frigerio E, Cassidy J. Phase I clinical and pharmacokinetic study of PK1 [N-(2-Hydroxypropyl)methacrylamide copolymer Doxorubicin]:First member of a new class of chemotherapeutic agents – drug-polymer conjugates, Clin Cancer Res 1999; 5: 83–94.PubMedGoogle Scholar
  87. 87.
    Kintzel PE. Anticancer drug-induced kidney disorders: Incidence, prevention and management. Drug Safety 2001; 24: 19–38.PubMedCrossRefGoogle Scholar
  88. 88.
    Viale MA, Minetti SB, Ottone MA. Preclinical in vitro evaluation of hematotoxicity of the cisplatin-procaine complex DPR. Anticancer Drugs 2003; 14: 163–166.PubMedCrossRefGoogle Scholar
  89. 89.
    Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: Incidence, treatment and prevention. Drug Safety 2000; 22: 263–302.PubMedCrossRefGoogle Scholar
  90. 90.
    Cummings BS, Lash LH. Metabolism and toxicity of trichloroethylene and S-(1,2-dichlorovinyl)-L-cysteine in freshly isolated human proximal tubular cells. Toxicol Sci 2000; 53: 458–466.PubMedCrossRefGoogle Scholar
  91. 91.
    Dvorak Z, Kosina P, Walterova D, Simanek V, Bachleda P, Ulrichova J. Primary cultures of human hepatocytes as a tool in cytotoxicity studies: Cell protection against model toxins by flavonolignans obtained from Silybum marianum. Toxicol Lett 2003; 137: 201–212.PubMedCrossRefGoogle Scholar
  92. 92.
    David ME, Berndt WO. Renal methods for toxicology. In: Wallace Hayes, A. (Ed.), Principles and Methods of Toxicology, 4th ed. Taylor and Francis Publisher, Philadelphia, 2001.Google Scholar
  93. 93.
    Li C, Wallace S. Polymer-drug conjugates: Recent development in clinical oncology. Adv Drug Deliver Rev 2008; 60: 886–898.CrossRefGoogle Scholar
  94. 94.
    Loehrer PJ, Einhom LH. Cisplatin. Ann Intern Med 1984; 100: 704–713.PubMedGoogle Scholar
  95. 95.
    Lieberthal W, Triaca V, Levine J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: Apoptosis vs. necrosis. Am J Physiol 1996; 240: F700–F708.Google Scholar
  96. 96.
    Mizumura Y, Matsumura Y, Hamaguchi T, Nishiyama N, Kataoka K, Kawaguchi T, Hrushesky WJM, Moriyasu F, Kakizoe T. Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn J Cancer Res 2001; 92: 328–336.PubMedCrossRefGoogle Scholar
  97. 97.
    Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 2003; 63: 8977–8983.PubMedGoogle Scholar
  98. 98.
    Matsumura Y, Maeda HA. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387–6392.PubMedGoogle Scholar
  99. 99.
    Maeda HA. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189–207.PubMedCrossRefGoogle Scholar
  100. 100.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. P Natl Acad Sci USA 1998; 95: 4607–4612.CrossRefGoogle Scholar
  101. 101.
    Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363–1380.CrossRefGoogle Scholar
  102. 102.
    Moghimi SM, Hunter AC, Murray JC. Nanomedicine: Current status and future prospects. FASEB J 2005; 19: 311–330.PubMedCrossRefGoogle Scholar
  103. 103.
    Park JH, Kwon S, Lee M, Chung H, Kim JH, Kim YS. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: In vivo biodistribution and anti-tumor activity. Biomaterials 2006; 27: 119–126.PubMedCrossRefGoogle Scholar
  104. 104.
    Vega-Villa KR, Takemoto JK, Yáñez JA, Remsberg CM, Forrest ML, Davies NM. Clinical toxicities of nanocarrier systems. Adv Drug Deliver Rev 2008; 60: 929–938.CrossRefGoogle Scholar
  105. 105.
    Peppas LB, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliver Rev 2004; 56: 1649–1659.CrossRefGoogle Scholar
  106. 106.
    Avgoustakisa K, Beletsia A, Panagia Z, Klepetsanisa P, Karydasb AG, Ithakissios DS. PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 2002; 79: 123–135.CrossRefGoogle Scholar
  107. 107.
    Fenga SS, Chien S. Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 2003; 58: 4087–4114.CrossRefGoogle Scholar
  108. 108.
    Fang JY, Chen JP, Leu YL, Hu JW. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur J Pharm Biopharm 2008; 68: 626–636.PubMedCrossRefGoogle Scholar
  109. 109.
    Ulbrich K, Subr V. Polymeric anticancer drugs with pH-controlled activation. Adv Drug Deliver Rev 2004; 56: 1023–1050.CrossRefGoogle Scholar
  110. 110.
    Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD. Extracellular pH distribution in human tumours. Int J Hyperther 1995; 11: 211–216.CrossRefGoogle Scholar
  111. 111.
    Volk T, Jahde E, Fortmeyer HP, Glusenkamp KH, Rajewsky MR. pH in human tumour xenografts: effect of intravenous administration of glucose. Brit J Cancer 1993; 68: 492–500.PubMedCrossRefGoogle Scholar
  112. 112.
    Tannockand IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 1989; 49: 4373–4384.Google Scholar
  113. 113.
    Yamagata M, Hasuda K, Stamato T, Tannock IF. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Brit J Cancer 1998; 77: 1726–1731.PubMedCrossRefGoogle Scholar
  114. 114.
    Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005; 1: 242–250.PubMedCrossRefGoogle Scholar
  115. 115.
    Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem 2005; 16: 122–130.CrossRefGoogle Scholar
  116. 116.
    Nori A, Kopecek J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv Drug Deliver Rev 2005; 57: 609–636.CrossRefGoogle Scholar
  117. 117.
    Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 2003; 91: 103–113.PubMedCrossRefGoogle Scholar
  118. 118.
    Lee ES, Shin HJ, Na K, Bae YH. Poly(L-histidine)–PEG block copolymer micelles and pH-induced destabilization. J Control Release 2003; 90: 363–374.PubMedCrossRefGoogle Scholar
  119. 119.
    Gerasimov OV, Boomer JA, Qualls MM, Thompson DH. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliver Rev 1999; 38: 317–338.CrossRefGoogle Scholar
  120. 120.
    Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 2005; 103: 405–418.PubMedCrossRefGoogle Scholar
  121. 121.
    Gillies ER, Goodwin AP, Frechet JM. Acetals as pH-sensitive linkages for drug delivery. Bioconjugate Chem 2004; 15: 1254–1263.CrossRefGoogle Scholar
  122. 122.
    Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl 2003; 42: 4640–4643.PubMedCrossRefGoogle Scholar
  123. 123.
    Licciardi M, Giammona G, Du J, Armes SP, Tang Y, Lewis AL. New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems. Polymer 2006; 47: 2946–2955.CrossRefGoogle Scholar
  124. 124.
    Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release 1997; 48: 157–164.CrossRefGoogle Scholar
  125. 125.
    Chung JE, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J Control Release 2000; 65: 93–103.PubMedCrossRefGoogle Scholar
  126. 126.
    Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release 1998; 53: 119–130.PubMedCrossRefGoogle Scholar
  127. 127.
    Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 1999; 62: 115–127.PubMedCrossRefGoogle Scholar
  128. 128.
    Jeong B, Bae YH, Kim SW. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloid Surface B 1999; 16: 185–193.CrossRefGoogle Scholar
  129. 129.
    Na K, Lee KH, Lee DH, Bae YH. Biodegradable thermo-sensitive nanoparticles from poly(l-lactic acid)/poly(ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur J Pharm Sci 2006; 27: 115–122.PubMedCrossRefGoogle Scholar
  130. 130.
    Chilkoti A, Dreher MD, Meyer DE, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliver Rev 2002; 54: 613–630.CrossRefGoogle Scholar
  131. 131.
    Dreher MR, Raucher D, Balu N, Colvin OM, Ludeman SM, Chilkoti A. Evaluation of an elastin-like polypeptide–doxorubicin conjugate for cancer therapy. J Control Release 2003; 91: 31–43.PubMedCrossRefGoogle Scholar
  132. 132.
    Kikuchi A, Okano T. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 2002; 27: 1165–1193.CrossRefGoogle Scholar
  133. 133.
    Makhaeva EE, Tenhu H, Khokhlov AR. Conformational changes of poly(vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules 1998; 31: 6112–6118.CrossRefGoogle Scholar
  134. 134.
    Rodriguez-Cabello JC, Reguera J, Girotti A, Alonso M, Testera AM. Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach. Prog Polym Sci 2005; 30: 1119–1145.CrossRefGoogle Scholar
  135. 135.
    Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials 2005; 26: 5064–5074.PubMedCrossRefGoogle Scholar
  136. 136.
    Liu SQ, Tong YW, Yang YY. Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) for controlled delivery of paclitaxel. Mol Biosyst 2005; 1: 158–165.PubMedCrossRefGoogle Scholar
  137. 137.
    Dewhirst M. Principles and Practice of Thermoradiotherapy and Thermochemotherapy. Springer-Verlag, Berlin, Edition, 1995.Google Scholar
  138. 138.
    Urry DW, Luan CH, Parker TM, Gowda DC, Prasad KU, Reid MC, Safavy A. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J Am Chem Soc 1991; 113: 4346–4348.CrossRefGoogle Scholar
  139. 139.
    Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 2001; 74: 213–224.PubMedCrossRefGoogle Scholar
  140. 140.
    Kaneko T, Willner D, Monkovic I, Knipe JO, Braslawsky GR, Greenfield RS, Vyas DM. New hydrazone derivatives of adriamycin and their immunoconjugates – a correlation between acid stability and cytotoxicity. Bioconjugate Chem 1991; 2: 133–141.CrossRefGoogle Scholar
  141. 141.
    Raucher D, Chilkoti A. Enhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition. Cancer Res 2001; 61: 7163–7170.PubMedGoogle Scholar
  142. 142.
    Kong G, Dewhirst MW. Hyperthermia and liposomes. Int J Hyperther 1999; 15: 345–370.CrossRefGoogle Scholar
  143. 143.
    Ning S, Macleod K, Abra RM, Huang AH, Hahn GM. Hyperthermia induces doxorubicin release from long-circulating liposomes and enhances their anti-tumor efficacy. Int J Radiat Oncol Biol Phys 1994; 29: 827–834.PubMedCrossRefGoogle Scholar
  144. 144.
    Tacker JR, Anderson RU. Delivery of anti-tumor drug to bladder cancer by use of phase transition liposome and hypothermia. J Urology 1982; 127: 1211–1214.Google Scholar
  145. 145.
    Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science 1995; 269: 850–853.PubMedCrossRefGoogle Scholar
  146. 146.
    Lauer U, Burgelt E, Squire Z, Messmer K, Hofschneider PH, Gregor M, Delius M. Shock wave permeabilization as a new gene transfer method. Gene Ther 1997; 4: 710–715.PubMedCrossRefGoogle Scholar
  147. 147.
    Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv 2004; 1: 37–56.PubMedCrossRefGoogle Scholar
  148. 148.
    Gao Z, Fain HD, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm 2004; 1: 317–330.PubMedCrossRefGoogle Scholar
  149. 149.
    Gao Z, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 2005; 102: 203–222.PubMedCrossRefGoogle Scholar
  150. 150.
    Husseini GA, El-Fayoumi RI, O'Neill KL, Rapoport NY, Pitt WG. DNA damage induced by micellar-delivered Doxorubicin and ultrasound: a Comet Assay Study. Cancer Lett 2000; 154: 211–216.PubMedCrossRefGoogle Scholar
  151. 151.
    Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 2002; 62: 7280–7283.PubMedGoogle Scholar
  152. 152.
    Marin A, Muniruzzaman M, Rapoport N. Acoustic activation of drug delivery from polymeric micelles: Effect of pulsed ultrasound. J Control Release 2001; 71: 239–249.PubMedCrossRefGoogle Scholar
  153. 153.
    Marin A, Muniruzzaman M, Rapoport N. Mechanism of the ultrasonic activation of micellar drug delivery. J Control Release 2001; 75: 69–81.PubMedCrossRefGoogle Scholar
  154. 154.
    Veronese FM, Schiavon O, Pasut G, Mendichi R, Andersson L, Tsirk A, Ford J, Wu G, Kneller S, Davies J, Duncan R. PEG-Doxorubicin conjugates: Influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug Chem 2005; 16: 775–784.PubMedCrossRefGoogle Scholar
  155. 155.
    Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yamasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: Polyion complex (PIC) micelles based on poly(ethylene glycol)-SS-oligodeoxynucleotide conjugate. Biomacromolecules 2005; 6: 2449–2454.PubMedCrossRefGoogle Scholar
  156. 156.
    Bagshawe KD, Springer CJ, Searle F, Antoniw P, Sharma SK, Melton RG, Sherwood RF. A cytotoxic agent can be generated selectively at cancer sites. Brit J Cancer 1988; 58: 700–703.PubMedCrossRefGoogle Scholar
  157. 157.
    de Groot FM, Damen EW, Scheeren HW. Anticancer prodrugs for application in monotherapy: targeting hypoxia, tumor-associated enzymes, and receptors. Curr Med Chem 2001; 8: 1093–1122.PubMedGoogle Scholar
  158. 158.
    Haba K, Popkov M, Shamis M, Lerner RA, Barbas CF, Shabat D. Single-triggered trimeric prodrugs. Angew Chem Int Ed Engl 2005; 44: 716–720.PubMedCrossRefGoogle Scholar
  159. 159.
    Shamis M, Lode HN, Shabat D. Bioactivation of self-immolative dendritic prodrugs by catalytic antibody 38C2. J Am Chem Soc 2004; 126: 1726–1731.PubMedCrossRefGoogle Scholar
  160. 160.
    Gopin A, Ebner S, Attali B, Shabat D. Enzymatic activation of second-generation dendritic prodrugs: Conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. Bioconjugate Chem 2006; 17: 1432–1440.CrossRefGoogle Scholar
  161. 161.
    Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001; 1: 118–129.PubMedCrossRefGoogle Scholar
  162. 162.
    Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 2006; 5: 147–159.PubMedCrossRefGoogle Scholar
  163. 163.
    Okamoto OK, Perez JF. Targeting cancer stem cells with monoclonal antibodies: A new perspective in cancer therapy and diagnosis. Expert Rev Mol Diagn 2008; 8: 387–393.PubMedCrossRefGoogle Scholar
  164. 164.
    Destito G, Yeh R, Rae CS, Finn MG, Manchester M. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 2007; 14: 1152–1162.PubMedCrossRefGoogle Scholar
  165. 165.
    Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliver Rev 2002; 54: 675–693.CrossRefGoogle Scholar
  166. 166.
    Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: From therapeutics to diagnostics. J Pharm Sci 2005; 94: 2135–2146.PubMedCrossRefGoogle Scholar
  167. 167.
    Lu Y, Low PS. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J Control Release 2003; 91: 17–29.PubMedCrossRefGoogle Scholar
  168. 168.
    Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Kamen BA. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992; 52: 3396–3401.PubMedGoogle Scholar
  169. 169.
    Reddy JA, Low PS. Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit Rev Ther Drug 1998; 15: 586–627.Google Scholar
  170. 170.
    Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today 2001; 6: 44–51.PubMedCrossRefGoogle Scholar
  171. 171.
    Satyam A. Design and synthesis of releasable folate–drug conjugates using a novel heterobifunctional disulfide-containing linker. Bioorg Med Chem Lett 2008; 18: 3196–3199.PubMedCrossRefGoogle Scholar
  172. 172.
    Stella B, Appicco S, Peracchia MT, Desmaele D, Hoebeke J, Renoir M, D’angelo J, Cattel L, Couvreur P. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 2000; 89: 1452–1464.PubMedCrossRefGoogle Scholar
  173. 173.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis, Adv Drug Deliver Rev 2002; 54: 631–651.CrossRefGoogle Scholar
  174. 174.
    Leamon CP, Pastan I, Low PS. Cytotoxicity of folate-pseudomonas exotoxin conjugates toward tumor cells: contribution of translocation domain. J Biol Chem 1993; 268: 24847–24854.PubMedGoogle Scholar
  175. 175.
    Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliver Rev 2000; 41: 147–162.CrossRefGoogle Scholar
  176. 176.
    Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002; 54: 561–587.PubMedCrossRefGoogle Scholar
  177. 177.
    Zenke M, Steinlein P, Wagner E, Cotton M, Beug H, Birnstiel ML. Receptor-mediated endocytosis of transferrin-polycation conjugates: An efficient way to introduce DNA into hematopoietic cells. P Natl Acad Sci USA 1990; 87: 3655–3659.CrossRefGoogle Scholar
  178. 178.
    Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2005; 2: 373–383.PubMedCrossRefGoogle Scholar
  179. 179.
    Grundker C, Gunthert AR, Millar RP, Emons G. Expression of gonadotropin-releasing hormone II (GnRH-II) receptor in human endometrial and ovarian cancer cells and effects of GnRH-II on tumor cell proliferation. J Clin Endocrinol Metab 2002; 87: 1427–1430.PubMedCrossRefGoogle Scholar
  180. 180.
    Dharap SS, Qiu B, Williams GC, Sinko P, Stein S, Minko T. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J Control Release 2003; 91: 61–73.PubMedCrossRefGoogle Scholar
  181. 181.
    Ruoslahti E. Targeting tumor vasculature with homing peptides from phage display. Cancer Biol 2000; 10: 435–442.CrossRefGoogle Scholar
  182. 182.
    Nilsson F, Tarli L, Viti F, Neri D. The use of phage display for the development of tumour targeting agents. Adv Drug Deliver Rev 2000; 43: 165–196.CrossRefGoogle Scholar
  183. 183.
    Farokhzad OC, Karp JM, Langer R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliver 2006; 3: 311–324.CrossRefGoogle Scholar
  184. 184.
    Leroux JC. pH-responsive carriers for enhancing the cytoplasmic delivery of macromolecular drugs. Adv Drug Deliver Rev 2004; 56: 925–926.CrossRefGoogle Scholar
  185. 185.
    Plank C, Zauner W, Wagner E. Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Deliver Rev 1998; 34: 21–35.CrossRefGoogle Scholar
  186. 186.
    Richardson SCW, Pattrick NG, Man YKS, Ferruti P, Duncan R. Poly(amidoamine)s as potential nonviral vectors: ability to form interpolyelectrolyte complexes and to mediate transfection in vitro. Biomacromolecules 2001; 2: 1023–1028.PubMedCrossRefGoogle Scholar
  187. 187.
    Putnam D, Zelikin AN, Izumrudov VA, Langer R. Polyhistidine-PEG:DNA nanocomposites for gene delivery. Biomaterials 2003; 24: 4425–4433.PubMedCrossRefGoogle Scholar
  188. 188.
    Wang CY, Huang L. Polyhistidine mediates an acid dependent fusion of negatively charged liposomes. Biochemistry 1984; 23: 4409–4416.PubMedCrossRefGoogle Scholar
  189. 189.
    Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, Kim SY, Cho YW. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J Control Release 2006; 115: 37–45.PubMedCrossRefGoogle Scholar
  190. 190.
    Yang SR, Lee HJ, Kim JD. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J Control Release 2006; 114: 60–68.PubMedCrossRefGoogle Scholar
  191. 191.
    Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. P Natl Acad Sci USA 1994; 91: 664–668.CrossRefGoogle Scholar
  192. 192.
    Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A. Antennapedia homeobox peptide regulates neural morphogenesis. P Natl Acad Sci USA 1991; 88: 1864–1868.CrossRefGoogle Scholar
  193. 193.
    Wu HY, Tomizawa K, Matsushita M, Lu YF, Li ST, Matsui H. Poly-arginine-fused calpastatin peptide, a living cell membrane-permeable and specific inhibitor for calpain. Neurosci Res 2003; 47: 131–135.PubMedCrossRefGoogle Scholar
  194. 194.
    Nekhotiaeva N, Elmquist A, Rajarao GK, Hallbrink M, Langel U, Good L. Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 2004; 18: 394–396.PubMedGoogle Scholar
  195. 195.
    Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan. FASEB J 1998; 12: 67–77.PubMedGoogle Scholar
  196. 196.
    Myrberg H, Lindgren M, Langel U. Protein delivery by the cell-penetrating peptide YTA2. Bioconjugate Chem 2007; 18: 170–174.CrossRefGoogle Scholar
  197. 197.
    Derossi D, Chassaing G, Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 1998; 8: 84–87.PubMedGoogle Scholar
  198. 198.
    Vives E. Present and future of cell-penetrating peptide mediated delivery systems: “Is the Trojan horse too wild to go only to Troy?” J Control Release 2005; 109: 77–85.PubMedCrossRefGoogle Scholar
  199. 199.
    Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 2007; 118: 216–224.PubMedCrossRefGoogle Scholar
  200. 200.
    Thomas H, Coley HM. Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003; 10: 159–165.PubMedGoogle Scholar
  201. 201.
    Choi CH. Abc transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Inter 2005, doi:10.1186/1475-2867-5-30.Google Scholar
  202. 202.
    Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: Role of atp-dependent transporters. Nat Rev Cancer 2002; 2: 48–58.PubMedCrossRefGoogle Scholar
  203. 203.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53: 615–627.PubMedCrossRefGoogle Scholar
  204. 204.
    Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5: 219–234.PubMedCrossRefGoogle Scholar
  205. 205.
    Grech KV, Davey RA, Davey MW. The relationship between modulation of MDR and glutathione in MRP-overexpressing human leukemia cells. Biochem Pharmacol 1998; 55: 1283–1289.PubMedCrossRefGoogle Scholar
  206. 206.
    Matsuo K, Kohno K, Takano H, Sato S, Kiue A, Kuwano M. Reduction of drug accumulation and DNA topoisomerase II activity in acquired teniposide-resistant human cancer KB cell lines. Cancer Res 1990; 50: 5819–5824.PubMedGoogle Scholar
  207. 207.
    Sugawara I, Akiyama S, Scheper RJ, Itoyama S. Lung resistance protein (LRP) expression in human normal tissues in comparison with that of MDR1 and MRP. Cancer Lett 1997; 112: 23–31.PubMedCrossRefGoogle Scholar
  208. 208.
    Pohl G, Filipits M, Suchomel RW, Stranzl T, Depisch D, Pirker R. Expression of the lung resistance protein (LRP) in primary breast cancer. Anticancer Res 1999; 19: 5051–5056.PubMedGoogle Scholar
  209. 209.
    Gonçlaves A, Braguer D, Kamath K, Martello L, Briand C, Horwitz S, Wilson L, Jordan MA. Resistance to taxol in lung cancer cells associated with increased microtubule dynamics. P Natl Acad Sci USA 2001; 98: 11737–11741.CrossRefGoogle Scholar
  210. 210.
    Simon SM, Schindler M. Cell biological mechanisms of multidrug resistance in tumors. P Natl Acad Sci USA 1994; 91: 3497–3504.CrossRefGoogle Scholar
  211. 211.
    Simon SM. Role of organelle pH in tumor cell biology and drug resistance. Drug Discovery Today 1999; 4: 32–38.PubMedCrossRefGoogle Scholar
  212. 212.
    Belhoussine R, Morjani H, Millot JM, Sharonov S, Manfait M. Confocal scanning microspectrofluorometry reveals specific anthracycline accumulation in cytoplasmic organelles of multidrug-resistant cancer cells. J Histochem Cytochem 1998; 46: 1369–1376.PubMedCrossRefGoogle Scholar
  213. 213.
    Mahadevan D, List AF. Targeting the multidrug resistance-1 transporter in aml: Molecular regulation and therapeutic strategies. Blood 2004; 104: 1940–1951.PubMedCrossRefGoogle Scholar
  214. 214.
    Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R. P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch 1999; 437: 652–660.PubMedCrossRefGoogle Scholar
  215. 215.
    Pierre A, Dunn TA, Kraus-Berthier L, Leonce S, Saint-Dizier D, Regnier G, Dhainaut A, Berlion M, Bizzari JP, Atassi G. In vitro and in vivo circumvention of multidrug resistance by Servier 9788, a novel triazinoaminopiperidine derivative. Invest New Drug 1992; 10: 137–148.CrossRefGoogle Scholar
  216. 216.
    Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H. Effect of transferrin receptor-targeted liposomal doxorubicin in p-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 2007; 329: 94–102.PubMedCrossRefGoogle Scholar
  217. 217.
    Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin a in polyalkylcyanoacrylate nanoparticles. Biomaterials 2000; 21: 1–7.PubMedCrossRefGoogle Scholar
  218. 218.
    van Vlerken LE, Duan Z, Seiden MV, Amiji MM. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 2007; 67: 4843–4850.PubMedCrossRefGoogle Scholar
  219. 219.
    Kabanov AV, Alakhov VY. Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug 2002; 19: 1–73.CrossRefGoogle Scholar
  220. 220.
    Deng WJ, Yang XQ, Liang YJ, Chen LM, Yan YY, Shuai XT, Fu LW. FG020326-loaded nanoparticle with PEG and PDLLA improved pharmacodynamics of reversing multidrug resistance in vitro and in vivo. Acta Pharmacol Sin 2007; 28: 913–920.PubMedCrossRefGoogle Scholar
  221. 221.
    Chavanpatil MD, Patil Y, Panyam J. Susceptibility of nanoparticle-encapsulated paclitaxel to p-glycoprotein-mediated drug efflux. Int J Pharm 2006; 320: 150–156.PubMedCrossRefGoogle Scholar
  222. 222.
    Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res 1999; 16: 1373–1379.PubMedCrossRefGoogle Scholar
  223. 223.
    Advani R, Lum BL, Fisher GA, Halsey J, Chin DL, Jacobs CD, Sikic BI. A phase I trial of liposomal doxorubicin, paclitaxel and valspodar (psc-833), an inhibitor of multidrug resistance. Ann Oncol 2005; 16: 1968–1973.PubMedCrossRefGoogle Scholar
  224. 224.
    Song S, Yu B, Wei Y, Wientjes MG, Au JL. Low-dose suramin enhanced paclitaxel activity in chemotherapy-naive and paclitaxel-pretreated human breast xenograft tumors. Clin Cancer Res 2004; 10: 6058–6065.PubMedCrossRefGoogle Scholar
  225. 225.
    Song S, Wientjes MG, Gan Y, Au JL. Fibroblast growth factors: An epigenetic mechanism of broad spectrum resistance to anticancer drugs. P Natl Acad Sci USA 2000; 97: 8658–8663.CrossRefGoogle Scholar
  226. 226.
    Lu D, Wientjes MG, Lu Z, Au JL, Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther 2007; 322: 80–88.PubMedCrossRefGoogle Scholar
  227. 227.
    Kim D, Lee ES, Oh KT, Gao Z, Bae YH. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 2008 (in press).Google Scholar
  228. 228.
    Greller LD, Tobin FL, Poste G. Tumor heterogeneity and progression: Conceptual foundations for modeling. Invas Metast 1996; 16: 177–208.Google Scholar
  229. 229.
  230. 230.
    Hartmann LC, Keeney GL, Lingle WL, Christianson TJ, Varghese B, Hillman D, Oberg AL, Low PS. Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 2007; 121: 938–942.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations