Functional Imaging of Multidrug Resistance and Its Applications

  • Célia M. F. Gomes

The emergence of multidrug resistance (MDR) is a major obstacle to the success of antineoplastic therapies [1]. The classical mechanism underlying MDR is the overexpression of energy-dependent transmembrane proteins behaving as drug efflux pumps. Three main proteins stand out in this family, P-glycoprotein (Pgp), multidrug resistance-associated protein-1 (MRP1), and breast cancer-related protein (BCRP). Each of these transporters has the ability to confer resistance to a broad spectrum of hydrophobic chemotherapeutic agents as a result of enhanced drug efflux [2]. These pumps, in particular Pgp, have been found in several highly resistant solid and hematological tumors and are associated with a poor prognosis [3–6]. Strategies to circumvent MDR include the co-administration of modulators, compounds that inhibit the functional activity of MDR-related transporters, and the use of cytotoxic agents that bypass the efflux mechanism [7]. Information on the functional expression of MDR-related transporters has the ability to provide a rational basis for developing potentially effective therapies that can be used in patients who are likely to be poor responders to standard chemotherapy and therefore have a poor prognosis under these circumstances.


Positron Emission Tomography Standardize Uptake Value Positron Emission Tomography Imaging Breast Cancer Resistance Protein Washout Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53:615–627.PubMedGoogle Scholar
  2. 2.
    Gottesman MM, Fojo T and Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2:48–58.PubMedGoogle Scholar
  3. 3.
    Han K, Kahng J, Kim M, Lim J, Kim Y, Cho B et al. Expression of functional markers in acute nonlymphoblastic leukemia. Acta Haematol 2000; 104:174–180.PubMedGoogle Scholar
  4. 4.
    Clarke R, Leonessa F and Trock B. Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis. Semin Oncol 2005; 32:S9–S15.PubMedGoogle Scholar
  5. 5.
    Serra M, Pasello M, Manara MC, Scotlandi K, Ferrari S, Bertoni F et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol 2006; 29:1459–1468.PubMedGoogle Scholar
  6. 6.
    Leonard GD, Fojo T and Bates SE. The role of ABC transporters in clinical practice. Oncologist 2003; 8:411–424.PubMedGoogle Scholar
  7. 7.
    Pauwels EK, Erba P, Mariani G and Gomes CM. Multidrug resistance in cancer: Its mechanism and its modulation. Drug News Perspect 2007; 20:371–377.PubMedGoogle Scholar
  8. 8.
    Sciuto R, Pasqualoni R, Bergomi S, Petrilli G, Vici P, Belli F et al. Prognostic value of (99m)Tc-sestamibi washout in predicting response of locally advanced breast cancer to neoadjuvant chemotherapy. J Nucl Med 2002; 43:745–751.PubMedGoogle Scholar
  9. 9.
    Zhou J, Higashi K, Ueda Y, Kodama Y, Guo D, Jisaki F et al. Expression of multidrug resistance protein and messenger RNA correlate with (99m)Tc-MIBI imaging in patients with lung cancer. J Nucl Med 2001; 42:1476–1483.PubMedGoogle Scholar
  10. 10.
    Burak Z, Moretti J, Ersoy O, Sanli U, Kantar M, Tamgac F et al. 99mTc-MIBI imaging as a predictor of therapy response in osteosarcoma compared with multidrug resistance – associated protein and P-glycoprotein expression. J Nucl Med 2003; 44:1394–1401.PubMedGoogle Scholar
  11. 11.
    West CM, Jones T and Price P. The potential of positron-emission tomography to study anticancer-drug resistance. Nat Rev Cancer 2004; 4:457–469.PubMedGoogle Scholar
  12. 12.
    Borst P and Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71:537–592.PubMedGoogle Scholar
  13. 13.
    Juliano RL and Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455:152–162.PubMedGoogle Scholar
  14. 14.
    Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE and Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene 2003; 22:7468–7485.PubMedGoogle Scholar
  15. 15.
    Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258:1650–1654.PubMedGoogle Scholar
  16. 16.
    Doyle LA and Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22:7340–7358.PubMedGoogle Scholar
  17. 17.
    Kruh GD and Belinsky MG. The MRP family of drug efflux pumps. Oncogene 2003; 22:7537–7552.PubMedGoogle Scholar
  18. 18.
    Cole SP, Sparks KE, Fraser K, Loe DW, Grant CE, Wilson GM et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 1994; 54:5902–5910.PubMedGoogle Scholar
  19. 19.
    Zaman GJ, Flens MJ, van Leusden MR, de Haas M, Mulder HS, Lankelma J et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA 1994; 91:8822–8826.PubMedGoogle Scholar
  20. 20.
    Rappa G, Lorico A, Flavell RA and Sartorelli AC. Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res 1997; 57:5232–5237.PubMedGoogle Scholar
  21. 21.
    Hipfner DR, Deeley RG and Cole SP. Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta 1999; 1461:359–376.PubMedGoogle Scholar
  22. 22.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998; 95:15665–15670.PubMedGoogle Scholar
  23. 23.
    Oguri T, Bessho Y, Achiwa H, Ozasa H, Maeno K, Maeda H et al. MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther 2007; 6:122–127.PubMedGoogle Scholar
  24. 24.
    Haimeur A, Conseil G, Deeley RG and Cole SP. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metabol 2004; 5:21–53.Google Scholar
  25. 25.
    Pratt S, Shepard RL, Kandasamy RA, Johnston PA, Perry W, III and Dantzig AH. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 2005; 4:855–863.PubMedGoogle Scholar
  26. 26.
    Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C and Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5:219–234.PubMedGoogle Scholar
  27. 27.
    Leonard GD, Polgar O and Bates SE. ABC transporters and inhibitors: new targets, new agents. Curr Opin Invest Drugs 2002; 3:1652–1659.Google Scholar
  28. 28.
    Sheps JA and Ling V. Preface: the concept and consequences of multidrug resistance. Pflugers Arch 2007; 453:545–553.PubMedGoogle Scholar
  29. 29.
    Yeh JJ, Hsu NY, Hsu WH, Tsai CH, Lin CC and Liang JA. Comparison of chemotherapy response with P-glycoprotein, multidrug resistance-related protein-1, and lung resistance-related protein expression in untreated small cell lung cancer. Lung 2005; 183:177–183.PubMedGoogle Scholar
  30. 30.
    Akgun A, Cok G, Karapolat I, Goksel T and Burak Z. Tc-99m MIBI SPECT in prediction of prognosis in patients with small cell lung cancer. Ann Nucl Med 2006; 20:269–275.PubMedGoogle Scholar
  31. 31.
    Yakirevich E, Sabo E, Naroditsky I, Sova Y, Lavie O and Resnick MB. Multidrug resistance-related phenotype and apoptosis-related protein expression in ovarian serous carcinomas. Gynecol Oncol 2006; 100:152–159.PubMedGoogle Scholar
  32. 32.
    Schneider J, Gonzalez-Roces S, Pollan M, Lucas R, Tejerina A, Martin M et al. Expression of LRP and MDR1 in locally advanced breast cancer predicts axillary node invasion at the time of rescue mastectomy after induction chemotherapy. Breast Cancer Res 2001; 3:183–191.PubMedGoogle Scholar
  33. 33.
    Yeh JJ, Hsu WH, Wang JJ, Ho ST and Kao A. Predicting chemotherapy response to paclitaxel-based therapy in advanced non-small-cell lung cancer with P-glycoprotein expression. Respiration 2003; 70:32–35.PubMedGoogle Scholar
  34. 34.
    Wunder JS, Bull SB, Aneliunas V, Lee PD, Davis AM, Beauchamp CP et al. MDR1 gene expression and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol 2000; 18:2685–2694.PubMedGoogle Scholar
  35. 35.
    Ford JM and Hait WN. Pharmacologic circumvention of multidrug resistance. Cytotechnology 1993; 12:171–212.PubMedGoogle Scholar
  36. 36.
    Ford JM and Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 1990; 42:155–199.PubMedGoogle Scholar
  37. 37.
    Krishna R and Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000; 11:265–283.PubMedGoogle Scholar
  38. 38.
    Thomas H and Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003; 10:159–165.PubMedGoogle Scholar
  39. 39.
    Ozben T. Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett 2006; 580:2903–2909.PubMedGoogle Scholar
  40. 40.
    Liscovitch M and Lavie Y. Cancer multidrug resistance: a review of recent drug discovery research. IDrugs 2002; 5:349–355.PubMedGoogle Scholar
  41. 41.
    Le LH, Moore MJ, Siu LL, Oza AM, MacLean M, Fisher B et al. Phase I study of the multidrug resistance inhibitor zosuquidar administered in combination with vinorelbine in patients with advanced solid tumours. Cancer Chemother Pharmacol 2005; 56:154–160.PubMedGoogle Scholar
  42. 42.
    Sandler A, Gordon M, De Alwis DP, Pouliquen I, Green L, Marder P et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res 2004; 10:3265–3272.PubMedGoogle Scholar
  43. 43.
    Fracasso PM, Goldstein LJ, De Alwis DP, Rader JS, Arquette MA, Goodner SA et al. Phase I study of docetaxel in combination with the P-glycoprotein inhibitor, zosuquidar, in resistant malignancies. Clin Cancer Res 2004; 10:7220–7228.PubMedGoogle Scholar
  44. 44.
    Pusztai L, Wagner P, Ibrahim N, Rivera E, Theriault R, Booser D et al. Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 2005; 104:682–691.PubMedGoogle Scholar
  45. 45.
    Seiden MV, Swenerton KD, Matulonis U, Campos S, Rose P, Batist G et al. A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol Oncol 2002; 86:302–310.PubMedGoogle Scholar
  46. 46.
    Gandhi L, Harding MW, Neubauer M, Langer CJ, Moore M, Ross HJ et al. A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer 2007; 109:924–932.PubMedGoogle Scholar
  47. 47.
    Yague E, Higgins CF and Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther 2004; 11:1170–1174.PubMedGoogle Scholar
  48. 48.
    Pichler A, Zelcer N, Prior JL, Kuil AJ and Piwnica-Worms D. In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clin Cancer Res 2005; 11:4487–4494.PubMedGoogle Scholar
  49. 49.
    Rao VV, Anthony DC and Piwnica-Worms D. MDR1 gene-specific monoclonal antibody C494 cross-reacts with pyruvate carboxylase. Cancer Res 1994; 54:1536–1541.PubMedGoogle Scholar
  50. 50.
    Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I and Willingham MC. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem 1989; 37:159–164.PubMedGoogle Scholar
  51. 51.
    Efferth T, Lohrke H and Volm M. Reciprocal correlation between expression of P-glycoprotein and accumulation of rhodamine 123 in human tumors. Anticancer Res 1989; 9:1633–1637.PubMedGoogle Scholar
  52. 52.
    Legrand O, Simonin G, Perrot JY, Zittoun R and Marie JP. Both Pgp and MRP1 activities using calcein-AM contribute to drug resistance in AML. Adv Exp Med Biol 1999; 457:161–175.PubMedGoogle Scholar
  53. 53.
    Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA and Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organo technetium complex. Cancer Res 1993; 53:977–984.PubMedGoogle Scholar
  54. 54.
    Pauwels EKJ, McCready VR, Stoot JHMB and van Deurzen DFP. The mechanism accumulation of tumour-localising radiopharmaceuticals. Eur J Nucl Med 1998; 25:277–305.PubMedGoogle Scholar
  55. 55.
    Maffioli L, Steens J, Pauwels E and Bombardieri E. Applications of 99mTc-sestamibi in oncology. Tumori 1996; 82:12–21.PubMedGoogle Scholar
  56. 56.
    Piwnica-Worms D, Kronauge JF and Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence. Circulation 1990; 82:1826–1838.PubMedGoogle Scholar
  57. 57.
    Chiu ML, Kronauge JF and Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med 1990; 31:1646–1653.PubMedGoogle Scholar
  58. 58.
    Modica-Napolitano JS and Aprille JR. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res 1987; 47:4361–4365.PubMedGoogle Scholar
  59. 59.
    Modica-Napolitano JS and Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 2001; 49:63–70.PubMedGoogle Scholar
  60. 60.
    Delmon-Moingeon L, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davison A and Jones AG. Uptake of the cation hexakis(2-methoxyisobutyisonitrile)-technetium-99m by human carcinoma cell lines in vitro. Cancer Res 1990; 1:2198–2202.Google Scholar
  61. 61.
    Sharma V, Luker GD and Piwnica-Worms D. Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging 2002; 16:336–351.PubMedGoogle Scholar
  62. 62.
    Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I et al. Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science 1986; 232:643–645.PubMedGoogle Scholar
  63. 63.
    Barbarics E, Kronauge JF, Cohen D, Davison A, Jones AG and Croop JM. Characterization of P-glycoprotein transport and inhibition in vivo. Cancer Res 1998; 58:276–282.PubMedGoogle Scholar
  64. 64.
    Ballinger JR, Muzzammil T and Moore MJ. Technetium-99m-furifosmin as an agent for functional imaging of multidrug resistance in tumours. J Nucl Med 1997; 38:1915–1919.PubMedGoogle Scholar
  65. 65.
    Muzzammil T, Moore MJ, Hedley D and Ballinger JR. Comparison of (99m)Tc-sestamibi and doxorubicin to monitor inhibition of P-glycoprotein function. Br J Cancer 2001; 84:367–373.PubMedGoogle Scholar
  66. 66.
    Sommers CL, Byers SW, Thompson EW, Torri JA and Gelmann EP. Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 1994; 31:325–335.PubMedGoogle Scholar
  67. 67.
    Bradley G, Juranka PF and Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta 1988; 948:87–128.PubMedGoogle Scholar
  68. 68.
    Utsunomiya K, Ballinger JR, Piquette-Miller M, Rauth AM, Tang W, Su Z-F et al. Comparison of the accumulation and efflux kinetics of technetium-99m sestamibi and technetium-99m tetrofosmin in an MRP-expressing tumour cell line. Eur J Nucl Med 2000; 27:1786–1792.PubMedGoogle Scholar
  69. 69.
    Perek N, Prevot N, Koumanov F, Frere D, Sabido O, Beauchesne P et al. Involvement of the glutathione S-conjugate compounds and the MRP protein in Tc-99m-tetrofosmin and Tc-99m-sestamibi uptake in glioma cell lines. Nucl Med Biol 2000; 27:299–307.PubMedGoogle Scholar
  70. 70.
    Vergote J, Moretti J, de Vries EGE and Garnier-Suillerot A. Comparison of the kinetics of active efflux of 99mTc-MIBI in cells with P-glycoprotein-mediated and multidrug- resistance protein-associated multidrug-resistance phenotypes. Eur J Biochem 1998; 252:140–146.PubMedGoogle Scholar
  71. 71.
    Hendrikse NH, Franssen EJF, van der Graaf WTA, Meijer C, Piers DA, Vaalburg W et al. 99m-Sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer 1998; 77:353–358.PubMedGoogle Scholar
  72. 72.
    O'Brien ML and Tew KD. Glutathione and related enzymes in multidrug resistance. Eur J Cancer 1996; 32A:967–978.PubMedGoogle Scholar
  73. 73.
    Cole SP and Deeley RG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 2006; 27:438–446.PubMedGoogle Scholar
  74. 74.
    Zaman GJ, Lankelma J, van Tellingen O, Beijnen J, Dekker H, Paulusma C et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci USA 1995; 92:7690–7694.PubMedGoogle Scholar
  75. 75.
    Gomes CMF, Paassen H, Romeo S, Welling MM, Feitsma RIJ, Abrunhosa AJ et al. Multidrug resistance mediated by ABC-transporters in osteosarcoma cell lines assessed by mRNA analysis and functional radiotracer studies. Nucl Med Biol 2006; 33:831–840.PubMedGoogle Scholar
  76. 76.
    Gomes CM, Welling M, Que I, Henriquez NV, van der PG, Romeo S et al. Functional imaging of multidrug resistance in an orthotopic model of osteosarcoma using (99m)Tc-sestamibi. Eur J Nucl Med Mol Imaging 2007; 34:1793–1803.PubMedGoogle Scholar
  77. 77.
    Moretti JL, Hauet N, Caglar M, Rebillard O and Burak Z. To use MIBI or not to use MIBI? That is the question when assessing tumour cells. Eur J Nucl Med Mol Imaging 2005; 32:836–842.PubMedGoogle Scholar
  78. 78.
    Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Charlop AW et al. [Tc-99m]-sestamibi uptake and washout in locally advanced breast cancer are correlated with tumor blood flow. Nucl Med Biol 2002; 29:719–727.PubMedGoogle Scholar
  79. 79.
    Del Vecchio S and Salvatore M. 99mTc-MIBI in the evaluation of breast cancer biology. Eur J Nucl Med Mol Imaging 2004; 31(Suppl 1):S88–S96.PubMedGoogle Scholar
  80. 80.
    Del Vecchio S, Zannetti A, Ciarmiello A, Aloj L, Caraco C, Fonti R et al. Dynamic coupling of 99mTc-MIBI efflux and apoptotic pathway activation in untreated breast cancer patients. Eur J Nucl Med Mol Imaging 2002; 29:809–814.PubMedGoogle Scholar
  81. 81.
    Aloj L, Zannetti A, Caraco C, Del Vecchio S and Salvatore M. Bcl-2 overexpression prevents 99mTc-MIBI uptake in breast cancer cell lines. Eur J Nucl Med Mol Imaging 2004; 31:521–527.PubMedGoogle Scholar
  82. 82.
    Trock BJ, Leonessa F and Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst 1997; 89:917–931.PubMedGoogle Scholar
  83. 83.
    Kostakoglu L, Elahi N, Kiratli P, Ruacan S, Sayek I, Baltati E et al. Clinical validation of the influence of P-glycoprotein and technetium-99m-sestamibi uptake in malignant tumors. J Nucl Med 1997; 38:1003–1008.PubMedGoogle Scholar
  84. 84.
    Kao CH, Tsai SC, Liu TJ, Ho YJ, Wang JJ, Ho ST et al. P-Glycoprotein and multidrug resistance-related protein expressions in relation to technetium-99m methoxyisobutylisonitrile scintimammography findings. Cancer Res 2001; 61:1412–1414.PubMedGoogle Scholar
  85. 85.
    Del Vecchio S, Ciarmiello A, Potena MI, Carriero MV, Mainolfi C, Botti G et al. In vivo detection of multidrug-resistant (MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancer patients. Eur J Nucl Med 1997; 24:150–159.Google Scholar
  86. 86.
    Ciarmiello A, Del Vecchio S, Silvestro P, Potena MI, Carriero MV, Thomas R et al. Tumor clearance of technetium 99m-sestamibi as a predictor of response to neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 1998; 16:1677–1683.PubMedGoogle Scholar
  87. 87.
    Takamura Y, Miyoshi Y, Taguchi T and Noguchi S. Prediction of chemotherapeutic response by Technetium 99m – MIBI scintigraphy in breast carcinoma patients. Cancer 2001; 92:232–239.PubMedGoogle Scholar
  88. 88.
    Oka M, Fukuda M, Sakamoto A, Takatani H, Fukuda M, Soda H et al. The clinical role of MDR1 gene expression in human lung cancer. Anticancer Res 1997; 17:721–724.PubMedGoogle Scholar
  89. 89.
    Savaraj N, Wu CJ, Xu R, Lampidis T, Lai S, Donnelly E et al. Multidrug-resistant gene expression in small-cell lung cancer. Am J Clin Oncol 1997; 20:398–403.PubMedGoogle Scholar
  90. 90.
    Young LC, Campling BG, Voskoglou-Nomikos T, Cole SP, Deeley RG and Gerlach JH. Expression of multidrug resistance protein-related genes in lung cancer: correlation with drug response. Clin Cancer Res 1999; 5:673–680.PubMedGoogle Scholar
  91. 91.
    Kostakoglu L, Kiratli P, Ruacan S, Hayran M, Emri S, Ergun EL et al. Association of tumor washout rates and accumulation of technetium-99m-MIBI with expression og P-glycoprotein in lung cancer. J Nucl Med 1998; 39:228–234.PubMedGoogle Scholar
  92. 92.
    Bom HS, Kim YC, Song HC, Min JJ, Kim JY and Park KO. Technetium-99m-MIBI uptake in small cell lung cancer 13. J Nucl Med 1998; 39:91–94.PubMedGoogle Scholar
  93. 93.
    Zhou J, Higashi K, Ueda Y, Kodama Y, Guo D, Jisaki F et al. Expression of multidrug resistance protein and messenger RNA correlate with 99mTc-MIBI imaging in patients with lung cancer. J Nucl Med 2001; 42:1476–1483.PubMedGoogle Scholar
  94. 94.
    Balendiran GK, Dabur R and Fraser D. The role of glutathione in cancer. Cell Biochem Funct 2004; 22:343–352.PubMedGoogle Scholar
  95. 95.
    Meyers PA, Heller G, Healey J, Huvos A, Lane J, Marcove R et al. Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 1992; 10:5–15.PubMedGoogle Scholar
  96. 96.
    Provisor AJ, Ettinger LJ, Nachman JB, Krailo MD, Makley JT, Yunis EJ et al. Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the Children's Cancer Group. J Clin Oncol 1997; 15:76–84.PubMedGoogle Scholar
  97. 97.
    Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002; 20:776–790.PubMedGoogle Scholar
  98. 98.
    Baldini N, Scotlandi K, Barbantibrodano G, Manara MC, Maurici D, Bacci G et al. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. NE J Med 1995; 333:1380–1385.Google Scholar
  99. 99.
    Pakos EE and Ioannidis JP. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer 2003; 98:581–589.PubMedGoogle Scholar
  100. 100.
    Shnyder SD, Hayes AJ, Pringle J and Archer CW. P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma. Br J Cancer 1998; 78:757–759.PubMedGoogle Scholar
  101. 101.
    Burak Z, Ersoy O, Moretti JL, Erinc R, Ozcan Z, Dirlik A et al. The role of 99mTc-MIBI scintigraphy in the assessment of MDR1 overexpression in patients with musculoskeletal sarcomas: comparison with therapy response. Eur J Nucl Med 2001; 28:1341–1350.PubMedGoogle Scholar
  102. 102.
    Gorlick R, Liao AC, Antonescu C, Huvos AG, Healey JH, Sowers R et al. Lack of correlation of functional scintigraphy with (99m)technetium-methoxyisobutylisonitrile with histological necrosis following induction chemotherapy or measures of P-glycoprotein expression in high-grade osteosarcoma. Clin Cancer Res 2001; 7:3065–3070.PubMedGoogle Scholar
  103. 103.
    Liang JA, Shiau YC, Yang SN, Lin FJ, Lin CC, Kao A et al. Using technetium-99m-tetrofosmin scan to predict chemotherapy response of malignant lymphomas, compared with P-glycoprotein and multidrug resistance related protein expression. Oncol Rep 2002; 9:307–312.PubMedGoogle Scholar
  104. 104.
    Ak I, Aslan V, Vardareli E and Gulbas Z. Assessment of the P-glycoprotein expression by 99mTc-MIBI bone marrow imaging in patients with untreated leukaemia. Nucl Med Commun 2003; 24:397–402.PubMedGoogle Scholar
  105. 105.
    Ballinger JR, Bannerman J, Boxen I, Firby P, Hartman NG and Moore MJ. Technetium-99m-Tetrofosmin as a substrate for P-glycoprotein: in vitro studies in multidrug-resistant breast tumor cells. J Nucl Med 1996; 37:1578–1582.PubMedGoogle Scholar
  106. 106.
    Chen WS, Luker KE, Dahlheimer JL, Pica CM, Luker GD and Piwnica-Worms D. Effects of MDR1 and MDR3 P-glycoproteins, MRP1, and BCRP/MXR/ABCP on the transport of Tc-99m-Tetrofosmin. Biochem Pharmacol 2000; 60:413–426.PubMedGoogle Scholar
  107. 107.
    Perek N, Koumanov F, Denoyer D, Boudard D and Dubois F. Modulation of the multidrug resistance of glioma by glutathione levels depletion--interaction with Tc-99 M-Sestamibi and Tc-99 M-Tetrofosmin. Cancer Biother Radiopharm 2002; 17:291–302.PubMedGoogle Scholar
  108. 108.
    Sun SS, Hsieh JF, Tsai SC, Ho YJ and Kao CH. Technetium-99m tetrofosmin mammoscintigraphy findings related to the expression of P-glycoprotein mediated multidrug resistance. Anticancer Res 2000; 20:1467–1470.PubMedGoogle Scholar
  109. 109.
    Fukumoto M, Yoshida D, Hayase N, Kurohara A, Akagi N and Yoshida S. Scintigraphic prediction of resistance to radiation and chemotherapy in patients with lung carcinoma: technetium 99m-tetrofosmin and thallium-201 dual single photon emission computed tomography study. Cancer 1999; 86:1470–1479.PubMedGoogle Scholar
  110. 110.
    Shiau YC, Tsai SC, Wang JJ, Ho YJ, Ho ST and Kao CH. Technetium-99m tetrofosmin chest imaging related to p-glycoprotein expression for predicting the response with paclitaxel-based chemotherapy for non-small cell lung cancer. Lung 2001; 179:197–207.PubMedGoogle Scholar
  111. 111.
    Shiau YC, Tsai SC, Wang JJ, Ho YJ, Ho ST and Kao CH. To predict chemotherapy response using technetium-99m tetrofosmin and compare with p-glycoprotein and multidrug resistance related protein-1 expression in patients with untreated small cell lung cancer. Cancer Lett 2001; 169:181–188.PubMedGoogle Scholar
  112. 112.
    Shiau YC, Tsai SC, Wang JJ, Ho YJ, Ho ST and Kao CH. Predicting chemotherapy response and comparing with P-glycoprotein expression using technetium-99m tetrofosmin scan in untreated malignant lymphomas. Cancer Lett 2001; 170:139–146.PubMedGoogle Scholar
  113. 113.
    Shiau YC, Tsay SC, Wang JJ, Ho ST and Kao A. Detecting parathyroid adenoma using technetium-99m tetrofosmin: comparison with P-glycoprotein and multidrug resistance related protein expression - a preliminary report. Nucl Med Biol 2002; 29:339–344.PubMedGoogle Scholar
  114. 114.
    Yapar Z, Kibar M, Yapar AF, Uguz A, Ozbarlas S and Gonlusen G. The value of Tc-99m-tetrofosmin scintigraphy in the assessment of P-glycoprotein in patients with malignant bone and soft-tissue tumors. Ann Nucl Med 2003; 17:443–449.PubMedGoogle Scholar
  115. 115.
    Yapar Z, Kibar M, Ozbarlas S, Yapar AF, Uguz A, Zorludemir S et al. 99mTc-tetrofosmin scintigraphy in musculoskeletal tumours: the relationship between P-glycoprotein expression and tetrofosmin uptake in malignant lesions. Nucl Med Commun 2002; 23:991–1000.PubMedGoogle Scholar
  116. 116.
    Elsinga PH, Franssen EJ, Hendrikse NH, Fluks L, Weemaes AM, van der Graaf WT et al. Carbon-11-labeled daunorubicin and verapamil for probing P-glycoprotein in tumors with PET. J Nucl Med 1996; 37:1571–1575.PubMedGoogle Scholar
  117. 117.
    Hendrikse NH, de Vries EG, Eriks-Fluks L, van der Graaf WT, Hospers GA, Willemsen AT et al. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier. Cancer Res 1999; 59:2411–2416.PubMedGoogle Scholar
  118. 118.
    Speth PA, van Hoesel QG and Haanen C. Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 1988; 15:15–31.PubMedGoogle Scholar
  119. 119.
    Brady F, Luthra SK, Brown GD, Osman S, Aboagye E, Saleem A et al. Radiolabelled tracers and anticancer drugs for assessment of therapeutic efficacy using PET. Curr Pharm Des 2001; 7:1863–1892.PubMedGoogle Scholar
  120. 120.
    Hendrikse NH and Vaalburg W. Dynamics of multidrug resistance: P-glycoprotein analyses with positron emission tomography. Methods 2002; 27:228–233.PubMedGoogle Scholar
  121. 121.
    Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I and Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999; 39:361–398.PubMedGoogle Scholar
  122. 122.
    Schinkel AH, Wagenaar E, van Deemter L, Mol CA and Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96:1698–1705.PubMedGoogle Scholar
  123. 123.
    Hendrikse NH, Schinkel AH, de Vries EG, Fluks E, van der Graaf WT, Willemsen AT et al. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 1998; 124:1413–1418.PubMedGoogle Scholar
  124. 124.
    Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, Collier AC et al. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 2005; 77:503–514.PubMedGoogle Scholar
  125. 125.
    Mehta BM, Levchenko A, Rosa E, Kim SW, Winnick S, Zhang JJ et al. Evaluation of carbon-14-colchicine biodistribution with whole-body quantitative autoradiography in colchicine-sensitive and -resistant xenografts. J Nucl Med 1996; 37:312–314.PubMedGoogle Scholar
  126. 126.
    Levchenko A, Mehta BM, Lee JB, Humm JL, Augensen F, Squire O et al. Evaluation of 11C-colchicine for PET imaging of multiple drug resistance. J Nucl Med 2000; 41:493–501.PubMedGoogle Scholar
  127. 127.
    Hunter AL and Klaassen CD. Biliary excretion of colchicine. J Pharmacol Exp Ther 1975; 192:605–617.Google Scholar
  128. 128.
    Gangloff A, Hsueh WA, Kesner AL, Kiesewetter DO, Pio BS, Pegram MD et al. Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with (18)F-fluoropaclitaxel. J Nucl Med 2005; 46:1866–1871.PubMedGoogle Scholar
  129. 129.
    Hsueh WA, Kesner AL, Gangloff A, Pegram MD, Beryt M, Czernin J et al. Predicting chemotherapy response to paclitaxel with 18F-Fluoropaclitaxel and PET. J Nucl Med 2006; 47:1995–1999.PubMedGoogle Scholar
  130. 130.
    Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC and Herscovitch P. Biodistribution, radiation dose estimates, and in vivo Pgp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med 2003; 44:1330–1339.PubMedGoogle Scholar
  131. 131.
    Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC and Herscovitch P. Biodistribution, radiation dose estimates, and in vivo Pgp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med 2003; 44:1330–1339.PubMedGoogle Scholar
  132. 132.
    Kurdziel KA, Kalen JD, Hirsch JI, Wilson JD, Agarwal R, Barrett D et al. Imaging multidrug resistance with 4-[18F]fluoropaclitaxel. Nucl Med Biol 2007; 34:823–831.PubMedGoogle Scholar
  133. 133.
    Kalen JD, Hirsch JI, Kurdziel KA, Eckelman WC and Kiesewetter DO. Automated synthesis of 18F analogue of paclitaxel (PAC): [18F]Paclitaxel (FPAC). Appl Radiat Isot 2007; 65:696–700.PubMedGoogle Scholar
  134. 134.
    Shani J and Wolf W. A model for prediction of chemotherapy response to 5-fluorouracil based on the differential distribution of 5-[18F]fluorouracil in sensitive versus resistant lymphocytic leukemia in mice. Cancer Res 1977; 37:2306–2308.PubMedGoogle Scholar
  135. 135.
    Wolf W, Presant CA, Servis KL, el Tahtawy A, Albright MJ, Barker PB et al. Tumor trapping of 5-fluorouracil: in vivo 19F NMR spectroscopic pharmacokinetics in tumor-bearing humans and rabbits. Proc Natl Acad Sci USA 1990; 87:492–496.PubMedGoogle Scholar
  136. 136.
    Moehler M, Dimitrakopoulou-Strauss A, Gutzler F, Raeth U, Strauss LG and Stremmel W. 18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 1998; 83:245–253.PubMedGoogle Scholar
  137. 137.
    Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, Hohenberger P, Mohler M, Oberdorfer F et al. Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med 1998; 39:1197–1202.PubMedGoogle Scholar
  138. 138.
    Guo Y, Kotova E, Chen ZS, Lee K, Hopper-Borge E, Belinsky MG et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2',3'-dideoxycytidine and 9'-(2'-phosphonylmethoxyethyl)adenine. J Biol Chem 2003; 278:29509–29514.PubMedGoogle Scholar
  139. 139.
    Sharma V, Prior JL, Belinsky MG, Kruh GD and Piwnica-Worms D. Characterization of a 67 Ga/68 Ga radiopharmaceutical for SPECT and PET of MDR1 P-glycoprotein transport activity in vivo: validation in multidrug-resistant tumors and at the blood-brain barrier. J Nucl Med 2005; 46:354–364.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Biophysics/Biomathematics, IBILI – Faculty of MedicineUniversity of CoimbraQueryPortugal

Personalised recommendations