Skip to main content

Cancer Stem Cells: Potential Mediators of Therapeutic Resistance and Novel Targets of Anti-cancer Treatments

  • Chapter
  • First Online:
Pharmaceutical Perspectives of Cancer Therapeutics
  • 816 Accesses

Over the last decade, anti-cancer therapies (chemotherapy and radiation, hormonal, neoadjuvant, and combinatorial therapies) have prolonged the lives of cancer patients. However, present cancer therapies fail in a high percentage of cases due to an incomplete elimination of the tumor cells, resulting in relapse and metastasis of the tumor. The vast majority of cancer-related deaths are due to metastatic tumor growth that impairs the function of vital organ(s). Thus, cancer relapse and metastasis are the major challenges in fighting cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luzzi KJ, MacDonald IC, Schmidt EE et al. (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153: 865–873

    PubMed  CAS  Google Scholar 

  2. Spillane JB, Henderson MA (2007) Cancer stem cells: a review. ANZ J Surg 77: 464–468

    PubMed  Google Scholar 

  3. Li F, Tiede B, Massague J et al. (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17: 3–14

    PubMed  CAS  Google Scholar 

  4. Vaidya JS (2007) An alternative model of cancer cell growth and metastasis. Int J Surg 5: 73–75

    PubMed  Google Scholar 

  5. Kucia M, Ratajczak MZ (2006) Stem cells as a two edged sword – from regeneration to tumor formation. J Physiol Pharmacol 57(Suppl 7): 5–16

    Google Scholar 

  6. Allan AL, Vantyghem SA, Tuck AB et al. (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26: 87–98

    PubMed  CAS  Google Scholar 

  7. Holmgren L, O'Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1: 149–153

    PubMed  CAS  Google Scholar 

  8. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572

    PubMed  CAS  Google Scholar 

  9. Luzzi KJ, MacDonald I, Schmidt EE et al. (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153: 865–873

    PubMed  CAS  Google Scholar 

  10. Raff M (2003) Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 19: 1–22

    PubMed  CAS  Google Scholar 

  11. Passegue E, Wagers AJ (2006) Regulating quiescence: new insights into hematopoietic stem cell biology. Dev Cell 10: 415–417

    PubMed  CAS  Google Scholar 

  12. Horsley V, Aliprantis AO, Polak L et al. (2008) NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132: 299–310

    PubMed  CAS  Google Scholar 

  13. Tumbar T, Guasch G, Greco V et al. (2004) Defining the epithelial stem cell niche in skin. Science 303: 359–363

    PubMed  CAS  Google Scholar 

  14. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132: 598–611

    PubMed  CAS  Google Scholar 

  15. Bruce WR, Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199: 79–80

    PubMed  CAS  Google Scholar 

  16. Becker AJ, Mc CE, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197: 452–454

    PubMed  CAS  Google Scholar 

  17. Buick RN, Till JE, McCulloch EA (1977) Colony assay for proliferative blast cells circulating in myeloblastic leukaemia. Lancet 1: 862–863

    PubMed  CAS  Google Scholar 

  18. Raftopoulou M (2006) Cancer stem cells: the needle in the haystack. http://www.nature.com/milestones/milecancer/full/milecancer06.html

  19. Lapidot T, Sirard C, Vormoor J et al. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648

    PubMed  CAS  Google Scholar 

  20. Clarke MF, Dick JE, Dirks PB et al. (2006) Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66: 9339–9344

    PubMed  CAS  Google Scholar 

  21. Joseph NM, Mosher JT, Buchstaller J et al. (2008) The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 13: 129–140

    PubMed  CAS  Google Scholar 

  22. Zheng H, Chang L, Patel N et al. (2008) Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 13: 117–128

    PubMed  CAS  Google Scholar 

  23. Kim CF, Dirks PB (2008) Cancer and stem cell biology: how tightly intertwined? Cell Stem Cell 3: 147–150

    PubMed  CAS  Google Scholar 

  24. Tang DG, Patrawala L, Calhoun T et al. (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46: 1–14

    PubMed  CAS  Google Scholar 

  25. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3: 895–902

    PubMed  CAS  Google Scholar 

  26. Mazurier F, Gan OI, McKenzie JL et al. (2004) Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 103: 545–552

    PubMed  CAS  Google Scholar 

  27. Barker N, van Es JH, Kuipers J et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007

    PubMed  CAS  Google Scholar 

  28. Patrawala L, Calhoun T, Schneider-Broussard R et al. (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2– cancer cells are similarly tumorigenic. Cancer Res 65: 6207–6219

    PubMed  CAS  Google Scholar 

  29. Clarke RB, Spence K, Anderson E et al. (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277: 443–456

    PubMed  CAS  Google Scholar 

  30. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101: 781–786

    PubMed  CAS  Google Scholar 

  31. Hadnagy A, Gaboury L, Beaulieu R et al. (2006) SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 312: 3701–3710

    PubMed  CAS  Google Scholar 

  32. Ho MM, Ng AV, Lam S et al. (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67: 4827–4833

    PubMed  CAS  Google Scholar 

  33. Fang D, Nguyen TK, Leishear K et al. (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65: 9328–9337

    PubMed  CAS  Google Scholar 

  34. Singh SK, Hawkins C, Clarke ID et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    PubMed  CAS  Google Scholar 

  35. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116: 769–778

    PubMed  CAS  Google Scholar 

  36. Clarke RB, Anderson E, Howell A et al. (2003) Regulation of human breast epithelial stem cells. Cell Prolif 36(Suppl 1): 45–58

    PubMed  CAS  Google Scholar 

  37. Patrawala L, Calhoun T, Schneider-Broussard R et al. (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25: 1696–1708

    PubMed  CAS  Google Scholar 

  38. Yu F, Yao H, Zhu P et al. (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109–1123

    PubMed  CAS  Google Scholar 

  39. Kiel MJ, He S, Ashkenazi R et al. (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449: 238–242

    PubMed  CAS  Google Scholar 

  40. Szotek PP, Chang HL, Brennand K et al. (2008) Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proc Natl Acad Sci USA 105: 12469–12473

    PubMed  CAS  Google Scholar 

  41. Barrandon Y, Green H (1985) Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci USA 82: 5390–5394

    PubMed  CAS  Google Scholar 

  42. Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84: 2302–2306

    PubMed  CAS  Google Scholar 

  43. Locke M, Heywood M, Fawell S et al. (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 65: 8944–8950

    PubMed  CAS  Google Scholar 

  44. Li H, Chen X, Calhoun-Davis T et al. (2008) PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 68: 1820–1825

    PubMed  CAS  Google Scholar 

  45. Baguley BC (2006) Tumor stem cell niches: a new functional framework for the action of anticancer drugs. Recent Patents Anticancer Drug Discov 1: 121–127

    CAS  Google Scholar 

  46. Trumpp A, Wiestler OD (2008) Mechanisms of Disease: cancer stem cells – targeting the evil twin. Nat Clin Pract Oncol 5: 337–347

    PubMed  CAS  Google Scholar 

  47. Arai F, Hirao A, Ohmura M et al. (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161

    PubMed  CAS  Google Scholar 

  48. Zhang J, Niu C, Ye L et al. (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836–841

    PubMed  CAS  Google Scholar 

  49. Kaplan RN, Psaila B, Lyden D (2007) Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 13: 72–81

    PubMed  CAS  Google Scholar 

  50. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21: 605–631

    PubMed  CAS  Google Scholar 

  51. Sipkins DA, Wei X, Wu J et al. (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435: 969–973

    PubMed  CAS  Google Scholar 

  52. Calabrese C, Poppleton H, Kocak M et al. (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82

    PubMed  CAS  Google Scholar 

  53. Bao S, Wu Q, Sathornsumetee S et al. (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66: 7843–7848

    PubMed  CAS  Google Scholar 

  54. Croker AK, Allan AL (2008) Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 12: 374–390

    PubMed  CAS  Google Scholar 

  55. Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66: 4553–4557

    PubMed  CAS  Google Scholar 

  56. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea – a paradigm shift. Cancer Res 66: 1883–1890; discussion 1895–1886

    PubMed  CAS  Google Scholar 

  57. Raguz S, Yague E (2008) Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer 99: 387–391

    PubMed  CAS  Google Scholar 

  58. Sanchez-Garcia I, Vicente-Duenas C, Cobaleda C (2007) The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? Bioessays 29: 1269–1280

    PubMed  CAS  Google Scholar 

  59. Szakacs G, Paterson JK, Ludwig JA et al. (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5: 219–234

    PubMed  CAS  Google Scholar 

  60. Chapuy B, Koch R, Radunski U et al. (2008) Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia 22: 1576–1586

    PubMed  CAS  Google Scholar 

  61. Coelho AC, Messier N, Ouellette M et al. (2007) Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrob Agents Chemother 51: 3030–3032

    PubMed  CAS  Google Scholar 

  62. de Jonge-Peeters SD, Kuipers F, de Vries EG et al. (2007) ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit Rev Oncol Hematol 62: 214–226

    PubMed  Google Scholar 

  63. Engelman JA, Zejnullahu K, Mitsudomi T et al. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043

    PubMed  CAS  Google Scholar 

  64. Weisberg E, Manley PW, Cowan-Jacob SW et al. (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7: 345–356

    PubMed  CAS  Google Scholar 

  65. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2: 101–112

    PubMed  Google Scholar 

  66. Hu C, Li H, Li J et al. (2008) Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis Sept. 26 Epub ahead of print

    Google Scholar 

  67. Loebinger MR, Giangreco A, Groot KR et al. (2008) Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade. Br J Cancer 98: 380–387

    PubMed  CAS  Google Scholar 

  68. Zhou S, Schuetz JD, Bunting KD et al. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7: 1028–1034

    PubMed  CAS  Google Scholar 

  69. Gutova M, Najbauer J, Gevorgyan A et al. (2007) Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE 2: e243

    PubMed  Google Scholar 

  70. Frank NY, Margaryan A, Huang Y et al. (2005) ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65: 4320–4333

    PubMed  CAS  Google Scholar 

  71. Wang S, Yang D, Lippman ME (2003) Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin Oncol 30: 133–142

    PubMed  CAS  Google Scholar 

  72. Todaro M, Alea MP, Di Stefano AB et al. (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1: 389–402

    PubMed  CAS  Google Scholar 

  73. Cairns J (2002) Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci USA 99: 10567–10570

    PubMed  CAS  Google Scholar 

  74. Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115: 2381–2388

    PubMed  CAS  Google Scholar 

  75. Park Y, Gerson SL (2005) DNA repair defects in stem cell function and aging. Annu Rev Med 56: 495–508

    PubMed  CAS  Google Scholar 

  76. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98: 1777–1785

    PubMed  Google Scholar 

  77. Bao S, Wu Q, McLendon RE et al. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760

    PubMed  CAS  Google Scholar 

  78. Shafee N, Smith CR, Wei S et al. (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68: 3243–3250

    PubMed  CAS  Google Scholar 

  79. Liu G, Yuan X, Zeng Z et al. (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5: 67

    PubMed  Google Scholar 

  80. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275–284

    PubMed  CAS  Google Scholar 

  81. Shipitsin M, Polyak K (2008) The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 88: 459–463

    PubMed  CAS  Google Scholar 

  82. Modok S, Mellor HR, Callaghan R (2006) Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol 6: 350–354,

    PubMed  CAS  Google Scholar 

  83. Pusztai L, Wagner P, Ibrahim N et al. (2005) Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 104: 682–691

    PubMed  CAS  Google Scholar 

  84. Wang J, Guo LP, Chen LZ et al. (2007) Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67: 3716–3724

    PubMed  CAS  Google Scholar 

  85. Chen JS, Pardo FS, Wang-Rodriguez J et al. (2006) EGFR regulates the side population in head and neck squamous cell carcinoma. Laryngoscope 116: 401–406

    PubMed  CAS  Google Scholar 

  86. Karhadkar SS, Bova GS, Abdallah N et al. (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431: 707–712

    PubMed  CAS  Google Scholar 

  87. Fan X, Matsui W, Khaki L et al. (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66: 7445–7452

    PubMed  CAS  Google Scholar 

  88. Peacock CD, Wang Q, Gesell GS et al. (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104: 4048–4053

    PubMed  CAS  Google Scholar 

  89. Sims-Mourtada J, Izzo JG, Ajani J et al. (2007) Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 26: 5674–5679

    PubMed  CAS  Google Scholar 

  90. Clement V, Sanchez P, de Tribolet N et al. (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17: 165–172

    PubMed  CAS  Google Scholar 

  91. Finkel E (2001) The mitochondrion: is it central to apoptosis? Science 292: 624–626

    PubMed  CAS  Google Scholar 

  92. Papadopoulos V, Baraldi M, Guilarte TR et al. (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27: 402–409

    PubMed  CAS  Google Scholar 

  93. Papadopoulos K (2006) Targeting the Bcl-2 family in cancer therapy. Semin Oncol 33: 449–456

    PubMed  CAS  Google Scholar 

  94. Chelli B, Lena A, Vanacore R et al. (2004) Peripheral benzodiazepine receptor ligands: mitochondrial transmembrane potential depolarization and apoptosis induction in rat C6 glioma cells. Biochem Pharmacol 68: 125–134

    PubMed  CAS  Google Scholar 

  95. Chelli B, Rossi L, Da Pozzo E et al. (2005) PIGA (N,N-Di-n-butyl-5-chloro-2-(4-chlorophenyl)indol-3-ylglyoxylamide), a new mitochondrial benzodiazepine-receptor ligand, induces apoptosis in C6 glioma cells. Chembiochem 6: 1082–1088

    PubMed  CAS  Google Scholar 

  96. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7: 834–846

    PubMed  CAS  Google Scholar 

  97. Jorgensen HG, Copland M, Allan EK et al. (2006) Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin Cancer Res 12: 626–633

    PubMed  CAS  Google Scholar 

  98. Aguirre-Ghiso JA (2006) The problem of cancer dormancy: understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 5: 1740–1743

    PubMed  CAS  Google Scholar 

  99. Ranganathan AC, Adam AP, Aguirre-Ghiso JA (2006) Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5: 1799–1807

    PubMed  CAS  Google Scholar 

  100. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5: 738–743

    PubMed  CAS  Google Scholar 

  101. Lo Coco F, Nervi C, Avvisati G et al. (1998) Acute promyelocytic leukemia: a curable disease. Leukemia 12: 1866–1880

    PubMed  CAS  Google Scholar 

  102. Piccirillo SG, Reynolds BA, Zanetti N et al. (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765

    PubMed  CAS  Google Scholar 

  103. Leszczyniecka M, Roberts T, Dent P et al. (2001) Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 90: 105–156

    PubMed  CAS  Google Scholar 

  104. Sell S (2006) Cancer stem cells and differentiation therapy. Tumour Biol 27: 59–70

    PubMed  Google Scholar 

  105. Ito K, Hirao A, Arai F et al. (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12: 446–451

    PubMed  CAS  Google Scholar 

  106. Liu Y, Liu R, Mao SC et al. (2008) Molecular-targeted antitumor agents. 19. Furospongolide from a marine Lendenfeldia sp. sponge inhibits hypoxia-inducible factor-1 activation in breast tumor cells. J Nat Prod Nov. 7 Epub ahead of print

    Google Scholar 

  107. Greenberger LM, Horak ID, Filpula D et al. (2008) A RNA antagonist of hypoxia-inducible factor-1{alpha}, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther 7:3598–3608

    PubMed  CAS  Google Scholar 

  108. Kiel MJ, Yilmaz OH, Iwashita T et al. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121

    PubMed  CAS  Google Scholar 

  109. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6: 273–286

    PubMed  CAS  Google Scholar 

  110. Hurwitz H, Fehrenbacher L, Novotny W et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342

    PubMed  CAS  Google Scholar 

  111. Vredenburgh JJ, Desjardins A, Herndon JE et al. (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13: 1253–1259

    PubMed  CAS  Google Scholar 

  112. Kopp HG, Ramos CA, Rafii S (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13: 175–181

    PubMed  CAS  Google Scholar 

  113. Moreira IS, Fernandes PA, Ramos MJ (2007) Vascular endothelial growth factor (VEGF) inhibition – a critical review. Anticancer Agents Med Chem 7: 223–245

    PubMed  CAS  Google Scholar 

  114. Lyden D, Hattori K, Dias S et al. (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201

    PubMed  CAS  Google Scholar 

  115. Davidoff AM, Ng CY, Brown P et al. (2001) Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 7: 2870–2879

    PubMed  CAS  Google Scholar 

  116. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62

    PubMed  CAS  Google Scholar 

  117. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93–106

    PubMed  CAS  Google Scholar 

  118. Jin L, Hope KJ, Zhai Q et al. (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12: 1167–1174,

    PubMed  Google Scholar 

  119. Draffin JE, McFarlane S, Hill A et al. (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64: 5702–5711

    PubMed  CAS  Google Scholar 

  120. Sneddon JB, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1: 607–611

    PubMed  CAS  Google Scholar 

  121. Weijzen S, Rizzo P, Braid M et al. (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8: 979–986

    PubMed  CAS  Google Scholar 

  122. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer, 5: 423–435

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank all current and past Tang lab members for their support and helpful discussions. We apologize to those colleagues whose original work could not be cited in this chapter due to space constraint. This work was supported in part by grants from NIH (R01-AG023374, R01-ES015888, and R21-ES015893-01A1), American Cancer Society (RSG MGO-105961), Department of Defense (W81XWH-07-1-0616 & W81XWH-08-1-0472), Prostate Cancer Foundation, and Elsa Pardee Foundation (D.G.T) and by two Center Grants (CCSG-5 P30 CA166672 and ES07784). JQ was supported by a post-doctoral fellowship from DOD and HY was supported by a fellowship grant from the Chinese Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean G. Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yan, H., Qin, J., Tang, D.G. (2009). Cancer Stem Cells: Potential Mediators of Therapeutic Resistance and Novel Targets of Anti-cancer Treatments. In: Lu, Y., Mahato, R. (eds) Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0131-6_17

Download citation

Publish with us

Policies and ethics